
NPS52-86-008

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
*. ..LECTE

MIAR209MB

' The Fractal Geometry of Nature: Its Mathematical
3asis and Application to Computer Graphics

Michael E. Gaddis

Michael J. Zyda

C-2
,Jantuary 1986

Jqiproved for public release; distribuLion unlimited

Prepared for;

Chit' of Naval Research

Arlington, VA 22217

86 3 19 06c"

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. H. Shumaker D. A. Schrady
Superintendent Provost

The work reported herein was supported in part by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Clief of
Naval Research.

Reproduction of all or part of this report is authzrized.

This repor" was prepared by:

Mlichael J y
Assistant Professor
CompuLer Science

Reviewed by: Released by:

INCEnT Y.•NXEALE T. MARS
Chairman Denof Inforn-vaion a
Department of Computer Science Policy Science

1A

UNCLASSIFIED

SECURITY CLASSIFICATION Of THIS PAGE (ften DoE. Entoted)________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
_______REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

1. REPRT NUMEK 12;GOVT ACCESSION 3. RECIPICNT'S CATALOG NUMIIER

NPS52-86-OOC
4. TITLE (and Sublifti) 5. TYPE OF REPORT & PERIOD COVERED

The Fractal Geometry of Nature: Its
Mathematical Basis and Application to 6. PERFORMING ORG. REPORT NUMIIER

ComputerGraphics ______________

7. AUTI4OP(e) I. CONTRACT O1 -GRANT NUUUIERWa)

Michael E. Gaddis
Michael J. Zyda ______________

S. PERFORMING ORGANIZATION NAME AND ADDRESS 1. PROGRAM ELEMENT. PROJECT. TASK
Nava Potgrduat ScoolARIA A WORK UNIT NUMBtERS

Mnavaly PotgAdut School0 61152N; 1ROO0-01-MP
MontreyCA 9943-100N0001485WR41005

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Chief of Naval Research January 1986
Arlington, V.A 22217 13. NUMIIER OF PAGES

128
1I. MONITORING AGENCY NAME & AOORESS(*I 011oftat boo conuWja.. 0111 ce) IS. SECURITY CLASS. (of04 hopect~u)

I50. OECL A131 VIC ATION/ DOWWNAO
SCMEOUI.!

1G. DISTRISUTION STATEMENT (of ALW Report)

Approved for public release; distribution unlimited

01 OS.TRiDUTION STATEMENT W 00A deeW mEtoro# ta st'Ch30 to *DE0ufat 6"e *006s)

18 SUPOLEMCNtANY NOTES

~istK 14V90301 tcCoJS 00040#4 eld. Its-*4ve."p od Id.4omo Iy Woe$' atw"E)

General Term~s; Algorithats, techniqueu;

fr,*ctals, fractal mountaias, Koch curve

40 £gSYeaCT feeuINK0 ** tmvdeep .d. C 14 *~4(~vt b sbieIe

Fractal Geomet~ry is a recent synthesis of old matematical cotstructr3. It
was first popularized by complex renderings of terrain onl a conputer graphic.ý.
medium. Fractal geometry has since spawned research in many diverse sclentifle
disciplines. It rapid acceptance has been achieved due to its ability to mode-
phenomena that defy discrete computation due to roughness and discontintiltits.
With its quick acceptance has come pioble~s. Fractal geometry is a misundc-*-
stj~d id-a that. is quickly becoming buried under grandiose terninology that
Iserves no purpose. Its ess;enge Is Induction ýusni t-sir~ie geeretric coni:Lrcts~.,-
00 .'"j 1473 roITIow OP 1 OV Isois OBSOLETe US'CLA S S 11 ED)

S N 0102. LF-C0 d.A 6601 ECUNWTV CL&WFtCAYIO4W OrI *bilAG-E fIee. Dte NMoodd

UNCLASSIFIED
iECUmiTv CLAPIFICATIOW OF THiS PAGl fi3m DOm&

to transform initiating objects. The fractal objects that we create with this
process often resemble natural phenomenon. The purpose of this work is to
present fractal geometry to the graphics programmer as a simple workable tech-
nique. We hope to demystify the concepts of fractal geometry and make it
available to all who are interested.

;•"•¢::~ 'iCL.AS S IFIED

SeA"CUIM~"O V "tl a

The Fractal Geometry of Nature: Its Mathematical

Basis and Application to Computer Graphics

Michael E. Gaddi. and Michael J. Zyda
Naval Postgraduate School,

Code 52, Dept. of Computer Science,
Monterey, California 93943

ABSTRACT

Fractal Geometry is a recent synthesis of old mathematical
constructs. It was first popularized by complex renderings of terrain
on a computer graphics medium. Fractal geometry has since
spawned research in many diverse scientific disciplines. Its rapid
acceptance has been achieved due to its ability to model phenomena
that defy discrete computation due to roughneas and discontinuities.
With its quick acceptance has come problems. Fractal geometry is
a misunderstood idea that is quickly becoming buried under grandi-
ose terminology that serves no purpose. Its essence is induction
using simple geometric constructs to transform initiating objects.
The fractal objects that we create with this process often resemble
natural phenomenon. The purpose of this work is to present fractal
geometry to the graphics programmer as a simple workable tech-
nique. We hope to demystify the concepts of fractal geometry and
make it available to all who are interested.
Categories and Subject Descriptors: 1.3.3 [Picture/Image Gen-
erationi: surface visualization. 1.3.5 [Computationaal Geometry
and Object Modelinig): Bezier surfaces, fractals; 1.7 JThree-
Diwensiosal Graphics and Realism]: fractal surfaces-

General Terms: Algorithts-, techtiques;

Additional Key Words mid Phrases.: fractals, fractal mountains.
Koch curve:

n1s CRAW
OTIC TAB E,~~) 0n raa-

3 Thbw voeb ku tme asvpned by the NPS VowdeaF a Uk,.wO VtwptActi __" v'. i$- -=...

SAvad andlo&

TABLE OF CONTENTS

I. AN INTRODUCTION TO FRACTAL GEOMETRY 7

A. MATHEMATICS AS A MODEL FOR OUR UNIVERSE 7

B. FRACTAL GEOMETRY ... 9

C. GOALS OF THIS RESEARCH ... 9

IL THE MATHEMATICAL BASIS OF FRACTAL
GEOMETRY 10

A. PRELIM INARIES .. 10

B. DIM ENSION ... 15

C. FRACTAL CURVES AND SETS ... 24

Ill. THE IMPLEMENTATION OF FRACTALS IN COMPUTER
GRAPHICS 35

A. THE IMPLEMENTATION PROBLEM 35

B. MAPPING FRACTALS TO A BOUNDED SPACE 38

IV. FRACTAL COMPUTATION IN RI 4 5

A. THE GEOMETRY OF INITIATOR -. GENERATOR 45

B. THE MiD-POINT DISPLACEMENT TECHNIQUE 49

C. A KOCPI-LIKE FRACTAL ALGORITHM 51

D. IMPLEMENTATION .~ - ~~ I.....5-5

. ... s U M M A RY ... 55

V. FRACG$kA GEOMETRY FOR GRAPHICS TERRAIN 61

'A MODELING MOUNTAINOUS TERRAIN 61

"" ... FRA.CAL TOOLS FOR TERRAIN MODELING 68

.4.-.- -.----

VI. SHORT CUTS TO MOUNTAIN SHAPES ... 87

A. RECTANGULAR MIDPOINT TECHNIQUE 87

B. PARAMETRIC CUBIC SURFACES ... 92

VII. CONCLUSIONS ... 100

A. DIRECTIONS FOR FURTHER STUDY 100

B. CONCLUSIONS .. 102

APPENDIX A: FRACTAL COMPUTATION IN R2 103

APPENDIX B; RANDOM NUMBER GENERATORS 112

APPENDIX C: THE TRIANGULAR MOUNTAIN 116

APPENDIX D: THE RECTANGULAR MOUNTAIN 121

APPENDIX E: GEOMETRIC SUPPORT 126

LIST OF REFERENCES .. 128

INITIAL DISTRIBUTION LIST .. 129

I. AN INTRODUCTION TO FRACTAL GEOMETRY

A. MATHEMATICS AS A MODEL FOR OUR UNIVERSE

The various branches of mathematics have through time developed as a

response to the need for more detailed models to describe new developments,

both technological and philosophical. This was true when Newton developed
calculus and also true during the late 1800's through the 1920's when a schism

developed between the classical mathematicians and some brilliant innovative

thinkers.

1. The Mathematical Crises of the Early 19th Century

One of man's greatest strengths is his ability to question his surroundings

and beliefs and through this questioning develop new insight and innovation.
Most mathematical systems are developed for use in applications. Man's natural

inquisitiveness often leads him to develop his systems beyond the application and

into abstract theory. This theory drives him to investigate the applications and
often yields direction for new discoveries that were not previously foreseen or that

defy intuition.

Georg Cantor (1845-1018) was the most notable of a number of
mathematicians who questioned the basic precepts of mathematics and developed

the modern met theort. Some of Cantor's discoveries seemed to invalidate many

of the long held beliefs of mathematics. Cantor and his peers became deeply

involved in cotrovasy ovw th6i ftadiars. Their discovery of functiorw which

seemed to violate the basc rules of geometry and calculus wene deemed as
monalers and unworthy of consideration by reasonable men because they lacked

usefulness to any applicetion then known Jlef. 1 pp. 9J. These new concepts

would ieinaIn in the arena of pure theoretical ruathematics until science
developed to a point where the old models could no longer adequately describe its

processes and would look to the new mathematics for a new perspective.

It was from these discoveries that FracWa Gcamdrt was born Iftef.
1:Chap. 21. It will be seen in the following chapters that fractal geometry

7

IS *LANK

is a synthesis of many of the concepts which developed from the mathematical

schism of the 19th century, most notably set theory and topology.

2. What is a Mathematical Model

"4 Reference 2 defines a mathematical model in the following fashion [Ref.

. 2:pp 1-3]:

A matkematical model is a .p*thematical characteritation of a phenomenon orproess. It has three essenti parts: a pjrocess or phenomenon which ;a to be
moeled a mathematical structure capable of expressing the important proper-
ties of the object to be modeled, and an explicit correspondence between the
two.

Although the phenomenon of interest need not be taken from the real worl,they usually are. The real world component s described quantitatively by such
things as parameter values and at which time things occur.

The second component of a model is an abstract mathematical structure. In it-
self, the structure is abstract and has no intrinsic relation to the real world.
However because of its abstractness it can be used to model many different
phenomena. Every mathematical structure has an associated language for mak-
ing assertions. It the mathematical model ir successful the language of its
mathematical structure can be used to make assertions about the object being
modeled.

The third component of a model is a specification of the way in which the realworld is represented by the mathematical structure, that is, a correspondence
between the elements ol the first component and those of the second.

3. The Euclidean Model

When using mathematics to describe man-made objects, the Euclidean

model (standard Euclidean geometry) is usually satisfactory. Its structure is

simple and pure, which appeals to an engineer's nature. But as technolo•,

expands and we need to describe procesfes that are not twel bekaved, we need to

develop a geometry that can adequately model oui proccss within a certain

closeness of scale.

No model can completely dtscribe a natural object because nature does

not follow the man-made rules that we impose on our model. But at a given

scale, the model (if it is accurate) can describe the object with enough precision

to be of help in constructing it. Engineers use the geometry of a straight line to

describe a wall but this wall, when viewed closely enough, is not straight at a1.

This is of no matter to tLe engineer because his model is accurate for his scale of

reference.

B. FRACTAL GEOMETRY

One man who saw a need for a new geometry was Benoit B. Mandlebrot. He

felt that Euclidean geometry was not satisfactory as a model for natural objects.

To anyone who has tried to draw a picture of a nonregular object (such as a tree)

on a computer graphics screen, using the Euclidean drawing primitives usually

provided, this is an obvious statement. The strength of Mai dlebrot's finding was

his research ;nto the findings of the earlier mathematicianb and the development

of a practical application of their theory. Mandlebrot coined the term Frie"h to

describe a class of functions first discovered by Cantor (Cantor's dust), Koch (the

Koch curve) and Peano. He showed how these functions yield valuable insight

into the creation of models for natural objects such as coastlines and mountains.

Mandlebrot popularized the notion of a fractal geometry for these types of

objects. Although he did not invent the ideas he presents, Mandlebrot must be

considered important because of nis synthesis of the theory at a time when

science was reaching out for new more accurate models to describe its processes.

C. GOALS OF THIS RESEARCH

There are two approaches that can be taken in the investigatiou of fractal

geometry and computer graphics.

- To view the computer as a tool to enhance the investgatioa of fractal

geometry.

- To view fractal geometry as a tool to enhauce the realisi of computer
graphics.

This research will take the later approachl. It is designed to investigate the

mathematics of fractal geometry and to show its application to computer

graphics I hope to be able to tome the subject of fractal geometry by waking it%

oathematics and technique accessible to the average computer scientist.

Whm Mau •" took the -foirta.

m9

*1

U. THE MATHEMATICAL BASIS OF FRACTAL GEOMETRY

This chapter is a brief introduction to the mathematical foundations that

underlie the theory of fractals. Little technique currently exists for the practical

application to attain complete mathematical rigor when using fractal functions

(i.e. it is very difficult to prove that a set is fractal). This causes the non-

mathematician to accept much of what he does with fractals on faith. It is

instead important to understand the theory intuitively. This can be gained by a

cursory look at the mathematical foundations for fractals.

A. PRELIMINARIES

A complete definition of fractals is given later in this chapter but before we

can understand that definition, we must establish a foundation in set theory.

Fractals were discovered in set theory and topology. They can be considered as

an outgrowth of investigations into these related fields.

1. What is a Set

A set is defined in IRef $:pp. II1 in the following fashion:
A set is fored bv the grouping .t..oether of single objects into a whole. A set is

a plurality thoujlzt of as a unit. We can consider thes-e as r
as teference to a primitive C lrnept, familiar to us all, whose resolu ion into
-re fundamental conrepts would perhaps be neither competent nor nee, y,

will content ourwlves with this construction and will assume a. an axiom
that anibject M inherently determines otrtain other obifets o, 4, c, ..- in sOn
undefined way, and vic versa. We eptmhs relation by the worda Thea t M
consists of othi QZýOd d,6, C

This definition is intentionally vague to allow the set to become the bask

building block for all mathematical consumas.

,: ,. 2. Some Set Theoretic Concepts

"Thi section prewets some backrnd definitios ror rocepts used in

the body of this chapter. The reader is directed to the references for a detailed

explanation or proof (Ref. 2:Chap 51.

I. Cardluality

Two sets S and T ae said to have the sanm number of rkrnwtntl. or to have the
same wdimraws, if there is a on"" frutioa I from S to T.

V•. 10

lFhmt. ana Infixite Sets

A Set Sis eald to be•fi.*e iftS hs the samne cardinality as #,or if there is.po-
uitive ipte•re n such that S has the same cardinality as (1, ,SD,$...n) Other-
wise S i swid to be imn, ile.

Countabilty

A set S is ieid to be cowstaikf S has the same crdinality as a subset of N, the
set of positive integem. Otherwise, S is said to be

a). Any subset of a finite set is finite.

b). Any subset of any countable aet S is countable.

c). The set of natural numbers N is countable.

d). The set of rational numbers Q is countable.

d). The set of irrationul numbers is countable.

e). The union of a countable collection of countable sets is coatable.

Q. The set of read numbers R is uncountable.

3. Some Topoi ogical Coneps

This section presents some topological background concepts used in the

body of this chapter. The reader is directed to the referces Zor a detailed

explanation IRef. 3).

Metric Space
Ar ,e -14 #Pistt is a set in which we have a r e of 1he doseness oW proximity

o two elements of thf set, that is, we have a distance defined op t4e .et For ex-
ample, a moeic on R? wo*4d be the pytbusor•a metric:

CovrIng a S-4

Let X be a totpogira $wae- atad S a subsoetof X. A c~ d the W S is ex•tly
what its naqw- i=pis coludetao of subsets of X whbcb corer S. tWa Lk, w7os

., What is a Function

A function ia defined in Ref. 2:pp. 103-191] as

A functio-P from stsot A W &ast H s a ggi*whi-b spedla an ekemeuof Bfor
whb element of A.

leI A and I be se. A 1xvitiOc (Ic mop. .or Up*&fo t*oioa) I from A to 1),
denoted VA - B, is a retatin From A to B such tell.am for every e which 6 an
Ielem, t of A thee exists uaique in B uuch thm <*,*- is au neeat ofJ.
We write fYuJ - 4.

If f is function from A to1 B, then A is called the domain of the function f and B
iscalled the codomain of f

To completely define a function we must specify the domain, the codomain, and
the value 1(x) for each possible argument z.

Functions can be viewed as a specification of a method to describe the

creation of a set from other sets using some agreed upon mathematical

symbolism. The functions can yield powerful results when the target set (co-

domain) is complex and not easily described by set theoretical constructs. This is

especially true in fractal functions when the domain is RN and the object created

(set, co-domain) is a nonregular shape. This is one reason why the computer

graphics system is useful in the investigation of fractal functions. The computer

can model the infinite function and display a finihe approximation of the created

fractal set.

5. Useful Functional Concepts

It is often helpful to clearly understand the universe of discourse within

which a function exists. The function can be rigorously defined within the above

constructs but lack intuitive appeal due to its complexity. Mathematicians have

defined many useful concepts to describe functions. The concepts applicable to

this study are described below.

a. Partial Functions

Most of the fractal functions in this study have as their domain some

undefined subset of RN. It is useful then to consider them as partial functions

and not concern ourselves with a rigorous description of the domain of the

fractal. We take our definition from [Ref. 2:pp. 201-2021.

It is often convenient to consider a function from a subset A Iof A to a set B
with.Jut exactly specifying the domain A 'of the function. Alternativel , we can
view such a situation as one where a function has a domain A and .codrain ai,•
but the value of the function does not exist for some arguments of A. This is
called a partial ctin.

Deflnitiemw
Let A and B be sets, A partial fucttion f with domain A and todomain B is any
function from A' to B wbere A' is a subset of A. For any x which is an element
of A A', the value o? f (z) is said to be undef ined.

b. Bijectivity

It is often useful to know to what extent a function maps from the

uomain to the codomain. If a function is not a partial function and every point of

12

the domain maps to a point in the codomain then we want to know if all points

of the domain A in the mapping /(A) mar to distinct points in the codomain B.

We may also want to know to what extent the mapping 1(A) covers the set B.

The definition of bijective, surjective end irijective functions is from [Ref 2:pp.

2041.

Let f be a function /: A-,B.

(a) I is turiective (onto) if f (A) = B,

(b) I is injective (one.to-one) if a o a implies f (a) - t/(a'),

(c) / is bijective (one-to-one and onto) if I is both surjective aM J injective.

6. Functions From RN -* RN

A point in RN space is specified by an n-tuple of the form

(Z (z'z 24z31 Zn). To completely specify a function from RN -_ RN each point in

tY, d-'-main must map to a point in the codomain. An example is:

2 :R-,R
2

f ((Z1, 2)) (Z, 2
2)

This function is well defined. For each point in the domain of the function we

have specified a unique point in the codomain.

Most of the functions that are covered in this study are mappings within

R2 or R3. Fractal sets exist in all finite dimensions but it is impractical at this

point to use fractal functions beyond the fourth dimension in view of the graphics

display medium's limitation to two dimensions. The use of fractal functions

whose dimension is between 3 and 4 is currently being investigated by allowing

the function to roam the fourth dimension and then taking time slices which

yield three dimension approximations of the seut [Ref. 4J.

"7. Inductive Definitions of Sets

Functional constructs do not always provide a convenient we.ans of

charactering an infinite set. It is sometimes more eloquent and powerful to use

the inductive method to characterize a set.

13

:4

Our definition of inductive definitions of sets is from [Ref. 2:pp. 199201J.

An inductive2 definition of a set always consists of three distinct components.

1. The basis or basic clause, of the definition establishes that certain obj~ct.,
are in the set. The basic clause estalishes that a set is not empty and charac-
terizes the "building blocks" (the seeds of the induction) which are used to con-
struct the set from the inductive clause.

2. The induction. or indvctive clause, of an inductive definition establishes
tWe wyays in which elements of the set can be combined to obtain new elements.

rThe inductive clause always asserts that if oblects z .z are elements of the
set then they can be combined in certain spcrdwy ocet ther elements
'of Ih et (tus from the basic clause (or seeds) of the induction we induce the
remaining elements of the set).

3. The extremal clause asserts that unless an object can be shown to be a
member of a set b~y applying the basis and inductive clauses a finite number of
times, then the object is not a member of the set.

AP -4pinple of &n inductively defined set is:

(Bauis)
0t A

(Induction)

If n cA,then (it+2) cA

(Extremal)

No intlger is an element of A unless it can be shown to be so in a finite number
of applications of clauses I and 2 above.
The set that we defined is the set of all even nonnegative integers.

S. The Path To Fractals

* The path to fractals by the non-mathematician is not through theory but

through the investigation of their functions and methods of construction. This

investigation (&ad experimentation) yields. considerable insight into the nature of

fractals.

The choice of which set-descriptive methodology to use (functional or

inductive) in describing a set is often a matter of style but cani be dictated by

necessity if one method is inordinately tedious.

Most of the fract..e functions that are introduced in this study use the

inductive method as the primary functional tool. In fact, these functio.i uce a

hybrid of the functional and inductive constructs- described above.

Often called a reurrence definition.

14

B. DIMENSION

The classification of fractal sets from non-fractal sets is based on the

dimensional qualities of the set. To understand fractals you must have an

* appreciation for these differences.

The concept of dimension is one rife with difficulties. Many of the great

mathematicians have attempted to define dimension as a rigorous concept

consistent with the known mathematical systems. For each of their attempts

however, the concept becomes more prone to contradiction and paradoxes.

There currently exist five definitions of dimension that date back to the late

1800's 3. The classification of Fractal sets into a class of sets is the result of the

discovery of functions that created sets which did not fit comfortably into the

topological definition of dimension (which was the accepted definition at the

* ti-.e). Fractal sets are rigorously classified as those sets that demonstrate a

difference between the Hausdorff-Besicovitch dimension and the standard

topclogical dimension.

1. An Inaiitive Apprcach to Dimension

Dimension is a concept that seems intuitive when it is first introduced in

Euclidean geometrv ai the standard three dimensions. Long after Euclid made

the first attempts at defining dimension and concurrent with the discovery of

atomic particle pbysi:s the concept of dimension was rethought by the prominent

mathematicians of the umsn 1 his was necessary to realign the mathematical

model for the geoiet'ry of objicts with the new view of what those objects were

made ul. Our increasing -bility to focus on We nature of matter inevitably

causes the models we use to change.

The dilemma that arose from the new concepts of dimension quickly

developed into a theoretiý 4 debate that left intuition behind. When human

untuition fails, we must rely upon well founded models that are based on axioms

of basic mathematical truth. It is only through the rigorous ipvestigation of our
"V mathematical models that allows us to gn beyond ir•uitioa and investigate the

'11. Cattow and Minkowski; 2). Bouligean ane, Minkowski; 3). Pontraigin, Schnirehrnan and
Kolomozorov, Tihornirov; 4). Hausdorff-Pekitovitch and 5). the topological dimension (there are
others). Most of these definitions ,Pt concerned with the moat efficient method of covering a set
(i.e. am topological Coae"%".

true physical nature of the objects we model. The debate still rages today and

borders on the philosophical. Two examples should suffice to demonstrate the

complexity and possible paradoxes that can arise from dimension theory.

The first is from [Ref. 5:pp. 323-344].
Consider the wa, in which we define the densityof air at a given point and at a

Eiven moment. We picture a sphere of volume V centered at that point and in-
luding the mass M. The quotient M/V is the mean density within the sphere,

and by the true density we denote some limiting value of this quotient. This no-
tion, however, implies that at the given moment the mean density is practically
constant for spheres below a certain volume. This mean density may be notably
different for spheres containing 1,000 cubic meters and 1 cubic centimeter
respectively.

Suppose the volume becomes continually smaller. Instead of becoming less and
less important, these fluctuations come to increase. For scales at which the
brownian motion shows great activity fluctuations may attain I part in 1,8O0
and they become of the order of I part in 5 when the radius of the hypothetical
spherule becomes of the order of a hundredth of a micron.

One steri further and our spherule becomes of the order of *a molecule radius. I~n
a gas it will generally lie in intermolecular space, where its mean density will
henceforth vanish. At our point the true density will also vanish. But about
once in a thousand times that point will lie within a molecule, and the mean
density will be a thousand times higher than the value we usually take to be
the true density of the gas.

Let our spherule grow steadily smaller. Soon, except under exceptional cir-
cumstances, it will become empty and remain so henceforth owing to the intra-
atomic space; the true density vanishes almost everywhere, except at an infinite
number of isolated points, where it reaches an infinite value.

The second is from [Ref. h:pp. 17-18].
Consider a ball of 10 cm diameter made of a thick thread of I mm diameter that

(in latent fashion) possesses several distinct effective dimensions.

To an observer placed far away, the ball appears as a zero-dimensional figure: a
* point. As seen from a distance of 10 cm resolution, the ball of thread is a three-
dimensional figure. At 10 mm it is a mess of one-dimensional threads. At 0.1
mm, each thread becomes a column and the whole becomes a three-dimensional
figure again. At 0.01 mm, each column dissolves into fibers, and the ball aain
bicomes one-dimensional, and so on, with the dimension crossin over repaof
ly from one value to another. When the ball is represented by a nfuite number of
atomlike pinpoints, it becomes zero-dimensional again.

It is interesting to note that each of these examples demonstrate

dimension as a reflection of physical properties dependent on the observers point

of reference. Each ends with reference to the paradox of atomic particles. That

paradox is, for any collection of finite (or countably infinite) points, the

*• dimension is zero [Ref. 6:pp. 1-81. Since the earth and sun each have a finite

collection of atoms then accordingly their dimension is zern. Dimension exists

116

only for a mathematical continuum and as such lacks application to the physical

universe as we currently know it 4.

The two properties (continuity and dimension) cannot be separated.

Before the advent of atomic theory, matter was viewed as continuous and

composed of basic elements that were indivisible. While the debate raged over the

practical and philosophkal aspects of the nature of matter it became apparent

that the mathematical models which represent matter would have to change. It is

not practical to represent objects by representing each atom and its position

relative to the entire set. The power of modeling would thus be lost; that is, the

ability to model complex objects and their interaction by relatively simple

constructs. Thus the fact is reinforced that models can only represent objects

through gross approximations and that the model is only effective for a restricted

frame of reference. Without this realization, dimension would have very little

application.

2. Topological Dimension

a. An Intuitive Approach

The concept of dimension is very old. It is based on the algebraic

concepts of Euclidean n space and the notion that a set has dimension n if the

least number of real parameters needed to describe its points was n. This fuzzy

definition was accepted for a very long time until the advent of Cantor and set

theory. Cantor showed that dimension can be changed by a 1-1 tranformation

from an interval to a planar object. The fuzzy notin of dimension, as defined,

was challenged and required rethinking,

The mathematicians who did not accept many of the findings of set

theory at the time (but who could not disregard Cantors findings) began to

consider ways of explicitly defining dimension. The new definition would have to

be applicable to the bizarre functions of Cantor, Koch and Peano as well as the

The set theoretical concepts of finitenes, countably infinite and uncountably infinite (con.
tinuotus) sets carry with them very ptofound implications. It is premature to view matter as mere-
ly collcthions of finite atoms. Science may yet find true continuity (in the mathematical sense) in
atomic matter and the universe. For now, matter is what it is and ouw proau•ciatiom. upon it will
not change its true texture.

17

:-6

relatively simple objects that had previously fit into the old definition without

contradiction.

There was one crucial problem that Cantor's findings raised

(Ref. 6:pp. 4-6]:

An extremely important question was left opn: Is it possible to establish a
correspondence bitween Euclidean n space and Euclidean m space combinin the
features of both Cantor's and Peano's constructions, i.e. a correspondence which
is both 1:1 and continuous? The question is crucial since the existence of a
transformation~ of the stated type b~*ween Euclidean n sace and* Euclidean m
space would signify that dimension tin the natural sense that Euclidean n space
has dimension n) has no topological meaning whatsoever.

This fundamental problem was answered in 1911 by Brouwer. He

proved that Euclidean n space and Euclidean m space were not homeomorphic

unless n equals m. To say that two spaces A and B are homeomorphic means

that a mapping f :A -+B exists, such that f is continuous over A and bijective.

Additionally, the inverse of this mapping f - l:B -+A, is continuous over B and

*• bijective. If two spaces are homeomorphic then it is analogous to saying that they

"are topologically equivalent.

Further research was done and a precise definition of topological

dimension of a set was developed. This definition assigned an integer value as the

dimension of any set based on its topological properties.

b. Definition of Topological Dimension n

The rigorous investigation of dimension is beyond the scope of this

study but the following definition is included for completeness [Ref. 6:pp. 24J:

Roozhly speaking, we may say that a space has dimension < n if an arbitrarily
small piece or the sa ce surrunding each point moy be delimited by subsets of
dimension 4 n - 1. his meth of definition is inductiv, and an eleant start-:pg point for the induction is given by prescibig the null set as the (-I) dimeo.
Miond space.

The empty set and only the empty st has dirension -L.

A space X has dimension <, n (n ;t 0) at a point p it p ha~s arbitratily small
neig borhoods whose boundaries have dimenmion i a -

X has dimension 4 it, dim X .ý i, if X has dimension i n at each of its points.

X h*s dim nsion n at poinip if it is true that X has dimension (n at p and it is
false that rhas dimenaion a - I at p.

X ha- dimension n ifdim X 4 n is true and dim X• n - I is (alse.

X has diimeniom oc if dim X, a is fase for each a.

18

The topological dimension is rigorous and consistent for all sets that

exist within a metric space. The problem that arises with fractal sets and its

topological dimension is not that the topological dimension is wrong. Fractal sets

like all sets in a metric space exhibit a topological dimension. The question is

then, is the topological dimension an accurate description of the dimension of the

set or can we find a better way to characterize the dimensional qualities of the

set? This question can be extended; is the topological definition of dimension

useful and consistent with the iw;ý&n of dimension and space? Can we devise a

better concept which can further refine dimension and make it more useful'.

3. The Hausdorff-Besicovitch Dimension

This section is intentionally brief due to the subject's complexity and to

the lack of practical technique that it yields. The Hausdorff measure of a set is a

complex characterization of a method for covering a set. Hausdorff's theorem is

proved using the ezistential qualities of infinite sets in a metric space 0. While

the theorem may be important to mathematical theory, it proves unfortunate

that there is no straightforward practical method for determining the Hausdorff

measure of a set.

a. An Intuitive Approach to the Hausdorff Dimension

The acceptance of the Hausdorff method for covering a set as a

measute of dimension is not universal [Ref. 6:pp. 102] and [Ref. l:pp. 363.365I.

The debate is between the dieciplines of topology and metrics and is not wholly

germane to this study. It is beneficial to divorce ourselves from the debate and

consider both the topological dimension DT and the Haundorff-Besicovitch

dimension (HB) as merely measures of 4psaesii of a set's structure. Certainly

sets exist that have a topological dimension equal to I but in no way resemble a

simple Euclidean curve If the Hausdorff dimension yields a better measure of a

set's structure that provides a mathematical and intuitive difference that is useful

to us, it would be beneficial for us to investigate it.

'Try not to tsribe grandiote implications to a set's dimension (the fourth dimension as time

or some such) as this is premature at best. lather, view a set's dimension au merely descriptive
terminology much like the terminology of bijectivity describes a function's characteristics. The
problem most people have with this mental abstrattion is the visual reinforcement that they re.
ceived from the notion of te standard tL'ee dimenasios.

* V!

The Hausdorff measure of a set was developed during the same

period that the new topological dimension was invented to solve the paradoxes of

Cantor. The topological dimension was based on the idea of a neighborhood of a

point within a Euclidean space of RN. The connection to metric spaces and the

idea of measure is obvious when you consider that the Hausdorff measure of a set

is also based on this notion of a spherical neighborhood and what Hausdorff calls

A the test jundiom of a set. The test function of a set denoted h(p) is a function

that characterizes the "Ust " method of covering a point with the spherical ball

of radius p that covers points of the set, which in their union, cover the entire

set.

Consider for example the test function for a surface within R2. A

surface can be covered by discs (circles). The formula for the area of a circle

becomes the test function for the surface. The formula for the area of a circle

always contains the constant factor ir multiplied by the square of the radius r.

This radius is the measure p as above. This leaves us with a test function for a

planar shape in Rofh(p) = rp 2.

You might expect that the test function for a spherical neighborhood

in a Euclidean space above IR3 would be very difficult to imagine, and indeed it

is. Hausdorff further complicated the idea of test functions (even within the lower

dimensions) by allowing a test function to assume a non-integer parameter d so

that the test function h(p) - *(d)p d could have a real-valued parameter d.

"This further refinement of the test function allowed Hausdorff to make assertions

about how this test function h(p) behaved when the parameters p and d were

allowed to vary.

SHausdorff imagined the parameter p reducing in size until it

approached zero. The effect of this on our disc example is increasingly smaller

and smaller discs around points of the planar set. As the disc size is decreased,

fewer points of the set are contained in each disc neighborhood. ThLs requires

more discs to cover the set. As the parameter p becomes infinitely small the

number of discs required to cover the planar set approaches oM. We allow the

parameter to grow arbitrarily small. It is interesting to study the test function

20

and see what happens to the total area when the areas of the collection of discs

which cover the planar set are summed.

Let's reflect upon the mathematical process that we are developing.

When we attempt to approximate the area of the planar s-t by the union of the

discs which make up its cover, we are essentialiy observing small patches of the

surface and approximating the area of the set by making assertions about the

intrinsic qualities of the patch. The notion that this mieaure is merely an

approximation is important. As the size of our patch grows intrensingly small, we

can expect that we will get a better fit with our patches and hence a better

approximation of the area. The notions of approximation and fit become

increasingly helpful when you consider functions which describe sets of infinitely

rough tezdure as we find in fractal sets.

The importance of Hausdorff's discovery lies in the fact that for a

test function of a set, the parameter d is special. As p-*O he discovered that

there existed a unique real number d such that for d*<d, the infuium 6 defined

by the test function using d* approaches oo (for any countably infinite set). And

for a d'>d the corresponding infinum approaches zero. This means that e-•

set has a parameter which can be associated with it that is closely relate, f .hm,
amount of spate that it occupies. This number is the Hausdorff-Besicovi,ýh

dimension (measure) of the set.

These results only tell us that a number and function exist. They do

not tell us how to compute them in the general case. This gives us the quandary

of dealing with the HO dimension as a known concept that we can make

allusions to, but can rarely compute (at least at the present time).

b. Definition of the Hausdorff Dimension

The formal definition of the Hausdor•f dimension requires that we

formalize the intuitive discussion above, We first define what a p-measure of a set
is (analogous to the disc above) jRef. 6:pp. 102-1031.

SP-dinmen!siontJ measure for each non-negative real number p w&s defined by
ausdorfl for arbitrary metric soace, This measure is a meltal concept, whire

dimension is purely lopolofw•f. Nevertheless there is a strong connection
between the two con cept&. tr it turns out that a sp fe (topdo oicgi dimen-
sion a must have positive .iumioital nmeasure (Wh a- o. me~asre).

SFor our exaple this would be the sum of the ares of the discs.

4 21

"'Let X be a space and p an arbitrary real number, 0 E p <oo. Given E >0 let

where X = A' + A2 + A' + is any decompmsition of X into a countable
nuwber of subsets of diameter less than c, and the superscript p denotes ex-
ponent.Waion. Let

ml (X) = OUR m (X).
•nra (X) is called the p-measure or (p-dimensional) measure of X.

If p <q then n, (X) >, mf (X); in fart p <9 and in (X) <oo imply m, (X) = 0.

Conversely, if p> then nieX) < out(X); and if p>9 and
np (X) <00 implie• e (= P 00.

c. Mandelbrot's Misgivings about the HB Measure

It is clear from the previous definition that for practical applications

the Hausdorff dimension is difficult to compute directly. In iRef. 1:pp. 14-19] and

[Ref 71, Mandelbrot expressed a disaste for the focusing of attention on the HB

dimension. He states:

"I developed the definition of fractals using the topological and Hausdorff di-
mensions in response to colleagues who urge me to do so. They felt that it was
pecessary to rigorously define the concept within firm mathematical criteria. I
have come to believe that an empirical definition would be more beneficial at
this time because the present definition denies the inclusiou of some shapes that
could best be described as fractals."

Mandelbrot believes that the definition of the Hausdorff dimension is

too difficult to deal with and is perhaps too restrictive. He prefers to focus on the

behatioraJ aspects of the recurrence relatioship involved in fractals and the

empirical results from these equations.

A practical application of fractal functions in computer graphics

does, by necessity, bend to this same paradigm. This realizaLion should not blind

us to the fundamental nature of a fractal equation's uniqueness, however. It is

important to rnderstaad the dimeasioaud aspect of the fractal discourse to

appreciate the patential importance of fractals.

It is not preordained that fractal equations model nature with a

greater degree of accuracy then does the Euclidean model. The future way prove

the fractal model the superior method, however. The dimenaiorwl qualities of

fractal funct ions may be the aspect that proves this to be so.

22

4. Why Cc:-sider Dimension

For the purpose of this study, it is not important that a rigorous feel for

the mathematical properties of dimension theovy be grasped. In fact one needs no

knowledge of dimension to use fractal tech,•ques in the generation ot computer

graphics terrain. The literature is rife with articles about fractal objects in

computer graphics and it seems de rigue,'r to include an approximate fractal

dimension as put of its description. The techniques used to approximate

dimension as presented ia' [Ref. 1:pp. 5&-471 are mathematically unproven7 . More

importantly, the dimension yields little intuitive insight; one is hard pressed to

describe the differences between an object with an approximate dimension of 2.37

and another with a dimension of 2.45. The pictures are much more descriptive.

One use of approximate fractal dimension is to describe an object's

relative roughness. It is beneficial to view a fractal dimension as degrees of

roughness between the standard three dimensions. If the dimension is between 1

and 2 then the object should be a very irregular curve. If the dimension of that

curve approaches 1 then the curve is probably not very rough and would lack any

interesting diversion from an ordinary plane curve. If the dimension of the curve

approaches 2 then the curve becomes like . plane or filled polygon and again

lacks appeal. The most interesting fractal curves axe those which demonstrate

dimensioa never the center of the scale between the standrxd Euclidean

dimensions. A similar argument cau be made for #oisd objects with di

between 2 and I.

This i'* not to say that fractal geometry is not a powerful tool for the

graphics programmer. The evidence of the power of fractals to model objects of

considerable complexity is clearly demonstrated. To date, this power has not

been matched by other standard methods.

The graphics prorammer should not concern himself grerdy with the

dimension that is demonstrated at different levels of object construction. He must

concern himself with the techiaiques of construction and the realism that is

achieved.

7 At.i ft's method tos estimating the I&c.-tff.Ik ,itoc dimentaio for nonAftdQM

set built thwoIt self sisilar dwpes will be iuatduced in sectiou C afler the Koch tw, is
des-'bed.

23

C. FRACTAL CURVES AND SETS

1. Definition of Fractal Sets

We take our definition of fractal sets from (Ref 1:Chap 3 and pp. 361].

A fr.au set is a set for which the HEcu wtBcsi&.uitc dimension strictly
exceeds the .P--: u dimunsion.

As we have established and is emphasized by Mandelbrot, this definition

is not very useful. The definitions of topological and Hausdorff dimensions are

very involved. It is a gargantuan effort to prove that a set has a topological or

Hausdorff dimension (if one desires complete rigor, typically the topological

dimension is derived by the least parameter approach (section 2)). When using

A fractal functions then, it is practical to uaum that because the functional

* method you use is tractal-like that the dimension is fractal.

The functional techniques to be introduced have a certain methodology

that creates fractal sets with a behavior that is disciplined and predictable. The

assumption is, since these methodologies are well behaved, that any set created

by these methods (with some careful restrictions) will itself be a fractal set.

We are left with a practical methodology whereby we discover fractal

functional methods, prove that the set created is fractai, characterize the frac.al

part of the functional method (carefully) and then cwhriw that method a a

fractal method. If one's purpose is a practical application of fractal techniques'

and not a rigorous matheuatical investigation then this is a reasonable and

practical approach. This approach is taken in the remainder of this study.

2. Constructing Frutal $ ets

In order to describe the construction of the Koch curve, it is cessary to

present terminology introduced by Mindelbrot [Ref. Upp. 34-351.

We use a geometrical shape (at first a straight line) and call this shape

an INITIAMO& We create another shape that is constructed with shapes

similar to the initiator and call this a GENERA TO. We define a sequence of

4 A woqhing modal or eqtatiou whm you Lm only co.weemd abo w th. behavior and tat tke
exact amtheauaical pike.i

24

transformations upon all current initiators (suppose there are m such initiaor8)

in the construction by applying the generator to all initiators. This creates a new

construction that consists of - x r (where r is the number of distinct parts of the

generator) sides where each side is a shape that is similar to the initiator. The

next step is to again apply the generator to all initiators.

This recursive definition has no terminating event but is continued ad

infinitum. This functional process is well suited for recursion because the
•¶ 3 application of the generator to the initiator is constant with respect to method

and varies only to scale. It is also well suited for parallel processing (in the

computer science sense) because each application of a generator on all current

initiators is independent.

These concepts are probably confusing at this point and were especially

difficult to visualize when they were first envisioned because the authors had few

tools beyond mental imagery to convey their point. This is probably why they

were largely ignored for 70 years. It is much easier to visualize these functions

when they are shown on a computer graphics display.
3. The Koch curve.

The mathematicians Koch and Cantor developed functions which

attempted to challenge the mathematical models of continuity and

"differentiability. These equations were developed during the great debate on set

theory and were used by Cantor in arguing for his theory. These functions were

"like none before, using constructions which played upon natural geonaetric

€onstrucs but when combined with the power of infinite recursion becasue sets

which defied intuition. It was not until much later that mathematicians wvere able

to reconcile these functions with algebra and set theory. The function to be

introduced has been proven to have a Hausdorlf-D.eicotCtc dimension which

exceeds its topotogical diaesion'9.

The Koch curie is a very beautiful curve that at firt gives the observer

: ,,the impression of a snowflake or a coattline (Fig 2.1). Mandelbrot uses this type

of construction (with variation - i.e. randoomwe or less behaved generators) to

draw coastlines that look very realistic. To understand this consttuction is to

'Thus keetab do •exa uJ it is pmibc to maoroy, oe ii t*•be so.

VS 25

understari one method of obtaining a fractal set from a well defined non-fractal

set (R2) using non-random techniques. This method of construction (in the

general sense) is very powerful and is used throughout this thesis.

To construct the Koch curve, we use three initiators (line segments) of

equal length and join them to form an equilateral triangle 10 . To construct the

generator we use four line segments that are each 1 the length of the initiators
3

and apply these to each initiator (Fig 2.1). This yields a new geometric figure

with 12 sides versus the original 3 and a total perimeter length of 4 units of

length versus the original 3 units.

Figure 2.1 demonstrates the first and second recursive iterations of

building the Koch curve. Observe how the progression develops to yield the final

figurn. in Figure 2.1. Imagine this progression occurring indefinitely.

-With each iteration of applying the generator- the total perimeter length1

increases by - over the previous perimeter.

The length of the curve begins to increase without bound even though the
length of the initiator decreases to an infinitely small length. Hence the
curve's length is unbounded with no point intersecting but yet is contained
in a small bounded two dimensional area.

- The points of the curve are by construction only the end-points of each
initiator and each point is clearly distinct from the other (no two points are
connected).

-Although each point is distinct at any one level of the curve construction, it
can be proven that the curve when viewed in the limit is continuous at every
point.

- That due to the above qualities the curve is not differentiable at ANY point.

• 1 It is important to realize that the endpoints of the lines (initiators) are the only

points of the curve. The line only serves as a vehicle by which the points may be

easily determined. The exact same set could be built using 180 arcs as initiators.

An algorithm and computer graphics program for the construction of the

Koch curve is presented in Chapter 4 and Appendix A.

10 The choice of an equilateral triangle was arbitrary. We could have chosen any shape as

long as it was made up of Initiators a.:d avoided intersecting lines during recursion.

26
NZ

SINITIATOR

GENERATORA N =4

1 Initiating
r 3 Structure

I" st Recursive2n Re u s v

i
Iteration

Ierton•

THE KOCH CURVE

Recursive term- Output medium:
ination distance Laser printer

is .05 inch. Resolution:

[DT - 1,9J3 1 .281 300 dote/inch

p Figure 2.1 The Kcch Curve.

27

==-%

4. Mandelbrot's Dimension Approximation Function

In the above section, one functional construction technique for building a

fractal set has been introduced. It is possible to approximate the dimension of a

fractal curve that is built using these constructs. In [Ref. 1:pp 56-57], Mandelbrot

introduces a function that is based on the similarity properties of the above

technique. This function has a real exponent D that is t11 approximate

dimension of the fractal set"1 .

Consider a method of paving (covering?) a Euclidean shape. Divide a line

segment into N segments with each segment a part of the original segment such

that the sum of the lengths of the N segments equals the length of the original

segment. It follows then, that the sum of the ratios of the divided segments
SDivided~na segment ms

lengths to the original segment length e.g. rs = Divided aegment m

equal 1.

N
Er.= I
-1 I

We know that the dimension of a line is equal to 1. If we raise each of the above

ratios to the power D (where D = 1) the equivalence still holds.

w ~N

6-1

Let's allow the Koch function to assume a similar dimensional relationship but

treat D as a real valued unknown. Refer once again to Figure 2.1. Notice that
the length of the four line segments that make up the generator have a length

ratio of - to the initiator. Call this ratio P.. Notice that the generator is made
3

up of four initiator shapes. Call this number N.

'~ (r.) ' 1

.M11

' CAUTION: This technique does not mwccuwtp apply to other frutal functional
methods,

"28

Substituting and Solving for D:

4 (=)

log3

Which is equal to the Hausdorff-Besicovitch dimension of the Koch curve12.

This is not a proof of a general equation for the fractal (Hausdorff)

dimension of a self similar fractal set but implies that a general dimension

generating function is possible:

G(D) = r r -D

rn-1

Where N = number of sides of the generator.

Where Rm = ratio of side m to the initiator.

Mandelbrot claims that experimental evidence suggests that this equation holds

whenever this functional method is used.

When each segment of the generator is a fixed ratio to the initiator (as is

the case with the Koch curve) then the solution to this equation is trivial:

! og(N)

log(.--)'mm

5. Functional Characterization of the Koch Method

A complete and rigorous inductive definition of most fractal functions

can stretch the notational capabilities of the symbolic aspects of the inductive

and functional methods. It is thus generally impractical to use these methods

"The Koch curve was proven to have a Housdorf-Besicovitch dimension equal
Los- su 1.2818 and a topological dimension equal to 1, IHausdodrf Dimension uad auueres Mas].

V1 og

29

exccept in a verbose and non-rigorous manner. It can be insightful however, to

diasect the beaut (oneel) and hopefully gain further intuitive insight.

To simplify the process, we define a Koch half-line as in the above fractal

but with a single line segment as the Initiator (versus the equilaterai '.iaugk1.

We consider the line interval of [(0,0),(1,0)] within the set R2 . This restricts the

fractal shape that is drawn to a partial function on: [0,1] X (0,1] -+ [0,11 X [0,1].

Using the inductive process to define the essence of the fractal

sequencing, we have the following definition:

(Eaaae)

Step 0

110 = {(o.0'0.0),(I.o,0.o))

(Induction)

Step k

Label the ordered set of 2-tuple points from Step k-1 as:

Ilk-1 ff Pk-11,Pk-" 2,Pk-1V,..'Pk-l• }

where

n ; 4 (0-) + I

Determine the new set of ordered points for Step k as:

filk={ p P ,P3, 3 ...-,P*)

where
m =4- +1

where
Pk = pk-1
pts p 2-ks= P 12

ph 9 = ph-I3

30
"II:e.= i

S

where

(pkh2 ph 3,Ph4) = pk-i [1Ii..]pk-12

(pk 6,pk 7,pks) = pk-I 2 [2R 1]pk-1 3

(ph10 pk11,p 12) =p-i 3 3R4jp*-i 4

(Pkm-, in -3 ,P p m -2 k _) =f p k-1n [.-iRn]pk-1n

and where the relation [,... Rj] is the geometrical relationship between the two

end points of the initiator line segment from step k-1 and the five points of the

* generator that compose the ordered subset for step k as above. For purposes of

brevity, the full functional definition for this geometrical relationship is explained

in detail in Chapter 4.

(Ezitemaal)

No point is an element of fl unless it can be shown to be so in a finite

number of applications of clauses I and 2 above.

It is thus possible (but tedious) to rigorously characterize the Koch

fractal set within the well defined constructs of induction and the functional

technique.

6. Anether Fractal Set, Cantor's Dust

Cantor developed a function' 3 which used the same functional technique

as the Koch curve but with a reverse twist. Cantor "s function takes an initiator

(the unit interval 10,11) and dissolvee it into a discontinuous set which is as rich

in points as the interval 10,11 but contains no interval itself (Ref. 6:pp. 22-231.

The points of the set are all distinct but the set has the same cardinality as the

4 •!unit interval. The best description for this set is that it resembles a dust.

'Aso refented to as Cantor's diacoutiauum or Cantor's triadic set.

"31

Cantor's Dust is difficult to demonstrate on a graphics display because it

quickly dissolves below the resolution of the display. Refer to Figure 2.2 to

visualize the initiator and the generator. The initiator is a line interval [a , b I
1

where 0 (a < b < 1 and the generator is t.wvo intevals each I the le agth of
3

the initiator such that interval 1 is [a, a + ((b-a) x 3 J] and interval 2 is

[b- (b-a) xlb]. After the initial application of the generator to the unit

interval there will be two intervals in the current construction [0,11 and 13,1].
3

The second iteration of the recursive routine will yield four intervals
10I] 1,1, 12,1] and I ,J].

Every initiator that is created by the generator has an infinite sequence

that is begun at the next application of the generator. This cruses a series of

convergent sequences to each end point of each initiator. Thus each initiator

CANTOR'S DUST
-INITIATOR 2

I, T ~ ~ Initiating Structure: D
___________ The Interval (0,13) B= 60

1st Iteration - - Initiator Length 1

2nd Iteration . Initiator Length1

3rd Iteration - Initiator Length T

4th Iteration Initiator Length 1

Figure 2.2 Cantor's Dust.

"!I

e;awns a convergent sequence toward its endpoints. But for each initiator there

are also two spawned sequences toward the center. It is possible to imagine this

as an infinitely dividing organism which leaves behind four points (eggs) each

time it divides and then each egg itself replicates ... ad infinitum.

This functional method of diaslving a line is very powerful as a tool in

computer graphics because it can be used to cause many special effects from

ordinary objects. Mandelbrot has used variations of this method to create images

of star systems for example.

The topological dimension of Cantor's dust is 0 and by Mandelbrot's

dimension generating function we have the fractal (Hausdorff) dimension equal

to:

G D) N Ir.)D

Where N = 2

Where R..

Substituting and aohving:

Al ()D

D = log 2 : .6309
log 3

Cantor's dust was proven to have a Hausdorff-Besicovitch dimension of

log 2 .', .6309 (Ref. 1:pp. 77-78].

log 3

7. A Note on the Concept of Similarity and Fractals Sets

The use of the mathematical concept of similarity continually shows up

in the investigation of fractal functions. This can be expected because of the type

of functional building tools that are used for most of these sets. The relationship

of the generator to the initiator has similarity built in. Thus Mandelbrot is able

to use similarity properties in formulating a dimension generating function and in

making claims about the set's inherent structure.

•3

I•.

The functional method invented by Koch and Cantor is but one method

of determining r, fractal set. Similarity fractals may eventually be grouped into a

class of fractals (impeortant but restricted). This type of functional method

provides a vehicle for the creation of disciplined fractal sets but makes you

wonder about the rest of the space that fills the gaps between the standard

Euclidean shapes' 4, the self-similar fractals and the infinitude of RN.

4>

, Much like the rIte4MJCftd&tle numbers (* and o ra example) in all their uncoun•ably rich
expn M I P the gap betwe the failar (and well behaved) sets in R.

3

III. THE IMPLEMENTATION OF FRACTALS IN COMPUTER GRAPHICS

This chapter introduces the reader to the practical aspects of implementing

Fractals on a two dimensional computer graphics display. We are forced to

confront the issues of economy of scale between the infmite fractal function and

the finite computational environment of the computer. Understanding these

compromises is a necessary bridge to successful fractal programming.

A. THE IMPLEMENTATION PROBLEM

1. Infinite Recursion, Stacks and Data sets

It is naive to view the computer as a truly infinite abstract machine

which is capable of any binary computation of any length. Infinity is a concept

0 that when applied to physical objects quickly breaks down as soon as that object

is bounded in any way.

It is possible to model infinite behavior in computers though mathematics

(automata theory) and gain useful insight into possible capabilities of the

computer (the use of push down automata in compilers for instance). But in

order for automata theory to make assertions it is often necessary to make the

assumption that the automata (computer or an abstract machine) is in fact

infinite. When the assumption of infinity is made, there are many powerful

mathematical tools which can be brought to bear upon non-intuitive abstract

problems that would otherwise be functionally"8 intractable if the automata was

considered to have an arbitrarily large but boanded space. The question arises,

can we consider the implementation of these constructs (insights) as valid? The

answer is yes, but only in the context of some bounded space (for instance, the

maximum stack space for a push down compiler).

The question of how many valid programs can be recognized by such a

compiler is usually too dimcult to determine. The compiler's solution to the

problem is to use a passive sensor to detect stack overflow and notify the user

Functionally in the serm that the problem mwl be decidable but the solution *Wecs is so
large &ad undefined that it could not be determined in' to aabaonae amount of time.

35

.1. IN% 11.L.t*N2 INI !."N

NU that his problem is to large for the current stack space. Although the compiler is

theoretically a recognizer for an infinite set of programs, the finiteness of the

computer is the grounding factor.

A similar paradigm exists for implementing infinite functions like fractals

incompu~ters. Fractal functions use recursion, randomness, massive floating point

12 computations and large amounts of primary memory. In order to use the fractal

function productively, we must manage the methods we use and produce a finite

approximation of the fractal set we create. This can be done by a passive or

active means.

2. The Bounded Stack Limits Recursion

The Koch-like fractal functional method is by definition a recurrence

equation. All fractal methods M..'oduced in this thesis have a similar recurrence

definition. Thus it is impossible to avoid the use of recursion in the production of

fractal graphics'

Recursion on most Von Neuman type computers is implemented on the

system stack (which may be hardware (fixed) jr software (in primary memory

r and therefore expandable)). Such a stack is always bounded by a fixed upper

limit of allocatable memory space. The formal definition of the Koch-like fractal

method has no recursive terminating event. In order to use these methods, we

must determine the precision that we require and develop a termination event to

aigual the beginning of the recursive ascent when this precision is met.

Faiure to manage the recursive descent inevitably causes the exhaustion

of the system stack which stores the program saita on each recursive call"'. The

programmer should beewaeful to keep his local variables at a minimum in the

recursive subroutine. By doing so, the total data stored durin echb recursive

call is reduced.
.1 4

SWhy should you try 'The recumisje pan of fricts.s fucio is the r uteaically beau-
tiful aspect which mtakes them so eloquent and powtiful.

'~This. could be the r'ecursive temitnaaiozn event if you amc nok careful, It might be a good
idea to try tibs experimentally on your computer to determia, &his maxiimum mreusive descent
distaure.

.46

3. The Computer Graphics Set Paradigm

The paradigm that is used for displaying objects on the raster graphics

screen is inherently discrete and two-dimensional. A typical system consites of

prim'ifive that allow the user a view of his modeling world as a largely

unrestricted three dimensional space. These primitives are limited in their power

and are usually bused on the Euclidean geometry (lines, points, polygons etc.).

The user is required to supply viewing puranclars that def'me a limited three

dimensional viewing space. These commands are processed by the graphics

system which proj.ct., the objects contained in the viewing space onto a two-

dimensional space th-.t is the display screen. The display screen can be divided

into discrete entities called pizda, each of which represents one point on the

screen. The number of pixels defines the resolution of the screen.

Given the graphics paradigm, it is natural to model objects that are

* defimed on the display as a collection of discrete points. When viewed on the

screen, these pictures can accurately model objects of considerable complexity

[Ref. I]. This view is a departure from the normal view of the graphics

application programmer. The application programmer views the objects he

creates through a collection of Euclidean geometric primitives (lines polygons

etc.) that are abstracted from the actual display". Both views are useful models

in describing objects but for the fractal graphics programmer the furmer is the

more powerful because it neatly maps to the fractal method of object

construction.

lFor this study, we view the world and the objects it contains as

collections (sets) of discrete three dimensional points. When an object is built

through fractal techniques, the length of the pixel is a natural termination point

for the fractal recursive process. This yields an attractive bijective mapping from

our object to the display screen.

' All computer Craphics to an bistraction; realism is achieved through deception ot the eye
by a very small colltetioa of colored points. Our goal then, is to fiad the most eflicitt method of
dtfiams tho. powoi.

~' %~,37

A

4. Summary

From our previous discussion, it should be obvious that fractal sets do

not exist in our computer. The sets that we create are finite approximations of

the actual set. The same is true of the fractal pictures that we create and to

which we ascribe fractal dimensions. It is an illusion of the eye that we create by

taking the fractal computations below the resolution of the screen.

B. MAPPING FRACTALS TO A BOUNDED SPACE

In view of the graphics set paradigm, it behooves u. to develop a completely

bounded set space which has a one to one correspondence between the points

computed by the fractal equations and the entities of the screen. This abstraction

is appropriate because these entities called pixels (which are nothing more than

colored points) are the only components of the picture'9 . The only reason for not

using this methodology before is that it was functionally difficult to compute

(without some simplifying abstractions) the large number of pixels in the dispay

act,

1. Fractal Recursive Termination Event

Most graphics software packages provide v. means by which the user can

define the spAce on the display screen onto which he wishes to m~ip, This is done

by providing to the graphics system, viewing parmeters, which define a bounded

three dimensional space which is then projected onto the two dimensional screen.

Many mappings are possible within the above constructs but for Jhe

fractal programmer it is convenient to establish a mapping that provides for a

one to one (or bijective) relationship between the 3D pixei set and the real-valued

coordinate space in which we compute a fractal object. We develop this bijective

relationship by defining a fratal paA/ to be determined when the distace

between generating points (in real coordiuates) is less than the dhtance of one

pixel in the mapping of real to screen coordinates (SCR), Figure 3.1. Thi

mapping is explicit when the uindow, tiewporf and :-clipping are defined. This

mapping limits the numaber of pixels that can be Lsocited with a given fractal

Sinitialof to a one to one mapping of fracutl part to the pixd set. The sie of the

'nla fact. this is the way the Eldi'e" grapbhk ab.tutt sath ua a w am mapped to the
scrs. At some poa•t in thk display peam t"is mappme mugt Lae Place.

58

pixel is a cubic space which clumps together the infinite fractal space into a

discrete number of cubic spaces equal to the number of pixels in the pixel set.

The fractal programmer should choose his viewport and window carefully

so as to elicit the most attractive mapping possible between his object and the

screen. The viewport (SCR) rectangle should be defined such that the ratio of

the X distance (horizontal) to the Y distance (vertical) is equal to the ratio of the

X-Y distances of his (real-valued) window. The Z-distance (front and back

clipping plane distance) should be equal to the distance in the window

coordinates that defines the length of the pixel multiplied by the desired Z-depth.

Figure 3.2. Formally:

XSCR XWLD

Ysca Y WLo

Lecursive Ter Ination Event
Recursive Iteration i I Recursive Iteration i At

The POINT PLOT Routine

I
Z•IbI

I.' nori'Ctefor L*04t Zo Loop rho Pis*e Wr* Wsppcd To
rhn Tno PZJU• $X[S, ,Sa $*P 7%i r C'orrewpandisS Powaicioa

Th•e Poiats. To Ih* PiX*1 Sot. Z = rho Pixvi Sie•.

S~Figure 3.1. The Fractal Recursive Termination Event,.

s30

Terminh, o i pal IThe Pixel Set]

lrw ------9 .U.er Defined Viewport

r Dist. :-Oraphic& Display Space

SCR.

User Detined Window

In World Coord. System- \..
YDistace

S~-"

X Distance
WZVD

The Cubic Pixel Space

To Pixel Size X& Defined By The Z Depth In Pixel, Ia De fined By

1 PELSIZE X WLD Z-Depth1 ,x Z-Depth ,D

-- X s PIXEL SIZE

Figure 3.2. Normalizing the Pixel Space.

40

If the above relationship holds then the 8ize of the pixel in world coordinates is

equal to the X (or Y) world distance divided by the number of pixels, Figure 3.2.

XWLD
PIX SIZE = -

XSCR

The front and back Z-clipping planes should be established such that the distance

from front to back is equal to the desired Z depth (expressed in pixels) multiplied

by the pixel size (in world coordinates), Figure 3.2.

If the above viewing relationships hold, then the inclusion of a simple

check:

IF (InitiatorDstance < PIXSIZE) THEN
return;

ELSE
continue;

terminates the current recursive descent and begins backtracking.

2. Memory Requirements

The amount of main memory required by the fractal programmer is

directly proportional to the size of the pixel space that is being used to display a

fractal figure and the sophisication of the desired display.

a. Data Locality During Recursive Descent

If the fractal in question is a 1-2 aimensional display that is

displayed as a collection of points on a two dimensional plane then the

requirement to store the 3-tuple points is eliminated ((z ,p ,z) coordinates which

represent a point in R3). The points can be computed by the function and

displayed on the screen in the immediate mode and then destroyed. The only

requirement for memory is the data that is germane to the program ("globals"

and thus fixed at run time) and the amount of data pushed onto the run-time

stack for the recursive calls up to the point of the deepest recursive level. This

requirement is minimal and does not present any significant limitations.

An example cf such a frartal is the Koch curve The algorithm

presented in chapter 4 uses the data that is local to the subroutine that is

computing the current generator with the input coordinates of the initiator. The

41

--%

U- A__

inductive nature of the fractal method provides data independence so that the
programmer does not have to have available to his subroutine all points

computed thus fur.

b. Memory Requirements for the Fractal Set Paradigm

If the programmer requires a more sophisticated display that includes

a requirement for hidden surface removal and (or) lighting enhancement then the

fractal method becomes juat a part of the overall display process. The

programmer has the fractal process compute the points of the picture and these

points are stored in a memory structure. This structure is processed by a hidden

surface algorithm and a lighting algorithm and is then projected onto the screen.

The ideal Fractal computer would have an exhaustive memory and

unlimited romputing power to be able to allow us to store the entire pixel set in

memory. This however, can stretch the capabilities of most present day
computers. For example; if the pixel set is defined such that its dimensions are

100Oxl00Ox1000 (which is certainly reasonable), the amount of storage required

would be an array of II? x 24 bits20 or 24 billion bits.

Current techniques exist where this storage can be minimized. A Z-

buffer array can be used to store the current Z coordinate of the forward most

displayed pixel. By using this method the fractal computation can be made and

then a hidden surface computation can be immediately invoked to check the

tdiibility of the point by checking it against any other point in the same position

on the X-Y plane. This technique reduces the above space requirements to

106 x 24 bits + (Z- buffer = 106 x 32 bits)21 or 56 million bits.

A fractal programmer must manage his memory resources carefully

in order to maximize the computational resources available to him. This usually

requires a tradeoff between efficiency, realism and the memory space utilized.

The algorithms for hidden surface and lighting are well covered Iin the literature

and although they are integral aspects of the fractal realism issue they are not

germane to this study. Throughout the remainder of this study, we are not

0 24 bits for a machine ausuming the RGB color system with 24 bit planes. •ach color; red.
green and blue would then have 8 bits of precision.

I' Assuming the Z coordinate is stored as a 32 bit floatina point number; this number can be
further reduced if we frtrict the Z precision.

42

concerned with the methods of minimizing the the pixel set. We assume that we

have the full three dimensional set.

3. Concurrency

"A question arises, is it possible to generate fractals in Red Time 22? We

have enough knowledge at this juncture to discuss the possibility for concurrent

operations during the fractal recursive descent. There are two basic strategies

that can used if concurrent operations are available on the computer. We could

*: assign a process to each of the initial Initiators and process each to its desired

--* precision. We could also allow the imagined processor to have a means by which

at any level of the recursive descent, we could spawn a process to apply the

generator to the local initiator 23.

The local data independence of the fractal recursive function allows such

a spawning because the application of the generator to an initiator is local to the

initiator. This application is a result of the inductive process of the K-i steps

that led up to the Kth step. The mathematical process of applying the generator

at the K'h level needs only the initiator data from the K-I" step and requires no

knowledge of the entire fractal set. The power of induction is then

computationally realized. The number of calculations before the entire pixel set is

determined is not greater than the number of computations required to apply a

generator times the maximum recursive descent distance from any initiator to the

recursive termination event. A short algorithm describing the processing aspects

of the second method is shown in Figure 3.3.

S

"* . u To beat the human eye and achieve the ultimate graphics illusion, typically by completing

all computations and screen I/0 prior to the -.Leo. refresh rate (for a 30HZ display) of most

raster graphics displays.
"This of course would require an enormous computational power that does not currently ex-

uit, so in reality the spawning would have to be bounded in some way.

S '.43

-4

511 11 .q. 4" -- *01.Xtý ;-;

LOAD INITIATOR AND GENERATOR DATA

concurrent;
generate(INITIATOR 1);
generate(INITIATOR 2);
generate(INITIATOR 3);

generate(INITIATOR n);
end concurrent;

end main;

generate(INITIATOR I)

BUILD GENERATOR FROM INITIATOR

if (Distance < PIX size) then
PLOT POINT
return;

endif

concurrent;
generate(INITIATOR 1);
generate(INITIATOR 2);
generate(INITIATOR 3);

generate(INITIATOR m);
end concurrent;

end generate;

Figure 3.3. An Algorithm Which Utilizes Concurrent Operations.

44

IV. FRACTAL COMPUTATION IN R2

The algorithm introduced in the following section is capable of computing a

very broad class of Koch-like fractal curves within R2. It provides the fractal

graphics programmer with the basic tools for fractal computation and an

algorithmic template that can be used for many applications. The graphics

programmer needs to fully understand fractal programming within R2 before he

attempts the more complicated concepts of fractal terrain modeling in R3 .

A. THE GEOMETRY OF INITIATOR -+ GENERATOR

The geometric relationship between the Koch curve initiator and generator

can be described through a very simple set of data that captures the essence of

the Koch curve. The method introduced also allows us to vary the data which

defines the generator and compute many different fractal shapes2 4.

The general strategy for computing generator points from a set of initiator

points is to determine two lines that intersect at an unknown generator point,

Figure 4.1.a. The unknown generator point is defined by constant relationships

r between the initiator and generator. The first line is the perpendicular from the

generator point to the initiator line. The second line is formed between the first

point of the initiator and the unknown generator point. All data to compute the

line equations are derivable from the two endpoints of the initiator or from

constant initiator/generator ratios. For simplkity~s sake, we ignore the divide.by.

zero problems that are encountered when any of the lines are parallel to the X or

Y axis. These situations only simplify the computations and their solution is

demonstrated in Appendix A.

If we label the endpoints of the initiator as P1 =(X1 ,Y1) and P2 =(X2 ,Y2)

(Figure 4.l.a) then the slope of the initiator line is:

Y2 - Y,
Slope.hiat = X2- Al

• We must be ca'reful in our terminoloay because the relationship described can draw shapes
that do not avoid self interection sad thus must be coatidered quui-ractal.

- -V•

The slope of the perpendicular intercept line is the negative inverse of the

slope of the initiator, hence the slope of this linm is:

Slope.perp -1Flope.init

The intercept point on the initiator can be determined by using a constant

distance ratio as shown by the following equations:

X1 + (Generator.ratio. constant X X2)SX.pexp
1 + Geerator ratio.contant

Y~per Y + (Generator.vatio.•onstant x Y,)

1 + Gcnerator.ratio.constant

The value of "Gcuerdnordio.consad" is a fixed constant (although it might be

-@ interesting to randomize it) where you determine at what point the generator

intercept point intersects the initiator •nd express it as demonstrated in Figure

4.1.b. This ratio can be determined graphically, through hand calculation or via

an interactive automated means.

With the slope and a point of the line (X.perp,Y.perp) we can determine the

- line equation for the perpendicular line by determining the Y intercept:

Yintercept.perp - Y.perp - (Slope.perp x X.perp)

M This yields the line equation for the perpendicular line:

Y = (Slope.perp x X) + Y.intercept.perp

To detea .irme the generator line equation for the line segment which connects

the first point of the initiator and the unknown generator point, we need

constant information about the angle between the initiator and this line. This

&ngle is always constant with respect to the initiator and like the ratio

information above, it is recorded as a constant at run time (see Figure 4.1.c),

note that the angle may be positive or negative.

40
2*

A

0(Y -- Unknown
son, 0• " Generator Point

Generator Line-- '

CPOW r,1-'4---Perpendicular Intercept

Fig 4.1.a Intersecting Lines Determine a Generator Point.

Initi t r Generator Intercept Point

., G, pa
dist. a i .. dist. b

Ratio-constant - =
G, pa b

Fig 4.1.b. The Generator Ratio Constant

Point with positive angle Point with negative angle

s# 0 "',

-:, Fig 4.1.c. The AngleO ",Go

i• Figure 4.1 Building the Generator with Intoersirting Lines.

II7

V

I N

We record the data about the angle 9 as the tangent of the angle. With this

information, the slope of the generator line can be determined with the following

equation:

Slopgen TaniU + Slope.init
peg (1 - Tani9) x Slope.init

The Y intercept for the generator line can now be determined:

Y.intercept.gen = Yj- (Slope.gen x X1)

This yields the line equation for the generator line:

Y = (Slope.gen x X) + Y.intercept.gen

The Cartesian points of the unknown generator point can now be determined

by intersecting the two line equations and solving for X... (Figure 4.1.a) then

0 substituting Xse2 into one of the line equations and solving for Y 3... The

equations follow:

Xgn=Y.intercept.perp - Y.intercept.gen
Slope.gen - Slope.perp

y~n=(Slope.gen x X...) + Y~intercept..gen

The constant data for the Koch curve that corresponds to this geometric

method is illustrated in Figure 4.2.

There are many different ways to build a generator given an initiator using

standard geometric constructs but the method introduced allows experimentation

with the Koch function to diecovcr new shapes. By varying the tangent of 0 and

the rixed ratio of Figure 4.1 we can describe new generator constructions. These

new constructions can be used in the same algorithms that compute the Koch

curve. We Initiate the recursion on a generating structure built of line segment

initiators and allow the recursion to progress until a terminating event~s, creating

many diverse shapes. Figures 4.8 through 4.9 demonstrate some of these shapes.

'The length of a pixel or an aLrbazy line lenagth.

48

The Koch Generator 1

Point 1 Point 2 Point 8

- -- I

2 1 .
Ratio - 0.5 Ratio - 1.0 Ratio - 2.0

0- 0.0 6n 0.4710 reds. 8, 0.0

Figure 4.2 Ratio Constants for the Koch Curve Generator.

B. THE MID-POINT DISPLACEMENT TECHNIQUE

Mandelbrot [Ref. l:pp. 43 and pp. 233-234] uses an alternate technique to

draw the Koch-like curves that is equally valid. He calls his technique mid-point

displacement because he determines the generator via fixed relationships that

displace a point from the mid-point of the'initiator. This method uses many of

the same geometric relationships that are used above but provides a different

progression to the method of building the generator. This new view allows us to

look at the relationship between the initiator and generator in a slightly different

light. By so doing we are provided new insight as to how we might alter the

relationship to create new images anzd sets.

The mid-point displacement technique can be useful for two other reasons. It

is the best known method for fractal set building and because of this, it facilitates

communication between fractal programmers. Most of the terrain models that

have been developed use the mid-point technique. It also provides an easier

method to avoid line intersection.

49

The Midpoint Displacement
A. Technique

Figure 4.3.a First Midpoint Displacement.

Figure 4.3.b Second Midpoint Displacement.

THE KOCH GBNERATOR

Figure 4.3.c Third Midpoint Displacement.

Figure 4.3. The Koch Generat or Using Midpoint Displacement.

The mid-point displacement method is demonstrated in Figure 4.3. The

method progresses by taking the initial initiator and applying the first midpoint

displacement. This yields the figure demonstrated in Figure 4.3.a. The next step

performs a mid-point displacement on the left initiator created by step 1. This

yields the figure demonstrated in Figure 4.3.b. The third and final step is to

replace the right initiator created by step I as demonstrated in Figure 4.3.c.

so

. ;ýI V w.

-* The inversion of the direction of the mid-point application (in Figure 4.3.&

the displacement is above the initial initiator where in Figure 4.3.b it is below)
can be accomplished with a single computational procedure. We only need to

invert the position of point I and point 2 in the parameters of that procedure.

The parameter inversion changes the orientation of the initiator in space with

respect to the computation cf the midpoint displacement. The procedure blindly

computes the wid-point displacement relative to a fixed relationship to the

initiator input points. This operation implicitly defines the orientation of the

generator in space.

The geometry for computing the midpoint given two initiator points can be

computed in precisely the same manner as the intersecting line algorithm (The

Koch midpoint ratios are 1.0 and the angle 9 is .437 radians). An alternative

method is to use the equations of a line (or a plane) normal. The second method

(utilizing the normal) provides a geometric relationship which is intuitively

appealing. Its appeal comes from the desire to modify the length of the

displacement relative to the initiator with a random scaling factor.

The mid-point displacement technique has some advantages over -the line

intereection algorithm. Random modification of the length of the displacement

along the normal (from the computed generator point to the initiator using the

line intersection algorithm) is not intuitively appealing. It requires a translation

of the desired displacement into an angle (the angle 0 (Figure 4.1.c) between the

initiator line and the unknown generator intercept line). The control of that

angle is less intuitive than the control of a displacement length. The geometry
for mid-point displacement using the initiator normal is introduced in Chapter 5.

C. A KOCH-LIKE FRACTAL ALGORITHM

Implementing the above function is a relatively easy process that ie

demonstrated in this section and Appendix A via a gradual unorapping of the

-.lyers of complexity that are required to successfully implement the algorithm.
-k The algorithm roughly follows the template used in Chapter 3 to demonstrate

concurrent processing. A C-like language is used for the algorithmis.
The first algorithm (Figure 4.4) is a template that delineates the basic

- •processing steps. This recursive process is typical of fractal functions and can be

used as a template for many fractal programs. The second algorithm (Figure 4.5)

is an expansion of the first and demonstrates the replacement of a given initiator

using the line intersection method.

Appendix A is a complete Fractal program. This program was used to

produce the data for Figure 2.1 and Figures 4.6 through 4.9. This program

demonstrates the precautions that must be taken to avoid dvimd-by-zero when

lines are parallel to the X or Y axis.

main()

Load Initiator Coordinates;
V Load Generator Relationship Values;

(W 1= 1; 1<= Number of Initiators; 1=1+1;

4 generate(X(I)Y 1 (1)(1,X(1) 2,Y(1)2)

S~)

generate(X1 ,Y1 ,X2Yy)

Determine Distance Between the Endpoints of the Initiator

if (DIST < Pixel.length) retumn;

Replace Initiator with the Computed Generator;
Load the New Initiator Data into Local Generator Array

for J•-1; J<- Number of Generator Segments; J3J+1;

generawte(Xgen(J)I, Ygea(J),, Xgen(J),, Ygen(J)•),

S}

.1

Figure 4.4. High-level View of the Koch AIgorithm.

452

11jj 1

Load Initiator Coordinates;
Load Generator Relationship Values;

for 1=1; I<= Num~ber of Initiat~ors; 1=1+1;

generate(X(I) 11Y(I) 1 X(I)2,Y(I) 2)

geneWate(X 3 1X1X 2ty2)

/* Determine Disatnce Between the Endpoints of the Initiator '
DIST =soWt((X2-X 1)**2 + (2Y)*)

/If Distance is teas, than Aid Length; Solo and Return.
if (DIST <~ Pixel-length~)

plot powuto; /* Your Grap-ics Po int Plotting Routine/

return; 1' Point I and'29 P149 the game p.Zel

1Load The Endpoints of the faitiator into the. Generaor Array /
Generator.XIJ)X1
GeneratorX(Oj - '4;
Getterator-XINurogeatrpns + 1
Gecrator.YfNuwieroL~enerator.poinbs + 1I YI

/Detrrnifte Slope of -:At Iitialor /

Figure 4.5. Detaited View of the Koch Algonitihm.

/* Calculate the Unknown Generator Point via Intersecting Lines */
for J= 1; J<= Number.of.generator.points; J-J+1;{

/* Determine the Generator Point Intercept on the Initiator *1
X.perp = (X 1 + (Generator.ratio.constant [J] * X2)) /

(1+ Generator.ratio.constant [J]);
Y.perp = (Y 1 +(Generator.ratio.constant [J] * Y2)) /

(1+ Generator.ratio.constant [J]);

"/* Determine the Slope of the Perpendicular Line */
Slope.perp = (-1 / Slope.init);

/* Determine the Y-intercept of the Perpendicular Line *1
Y.intercept.perp = Y.perp - (Slope.perp * X.perp);

/* Determine the Slope of the Generator Line */
Slope.gen = Generator.tan.theda [JJ + Slope.init) /

(1-Generator.tan.theda [J] * Slope.init);

/* Determine the Y -intercept of the Generator Line */
Y.intercept.gen = Y, - (Slope.gen * X!);

* /* Determine the Unknown Generator Point */
Generator.X[J] = (Y.intercept.perp - Y.intercept.gen) /

(Slope.gen - Slope.perp);
Generator.Y[Jj - Slope.gen * Generator.X[J] + Y.intercept.gen;

for K=O; K<= Number.of.generator.points + 1; K=K+l;

generate(Generator.X(KJGenerator.YIKI,
Generator.X[K+I],Generator.YfK+1l);

/} End Generate

Figure 4.5. Detailed View of the Koch Algorithm (continued).

54

- = ---

D. IMPLEMENTATION STRATEGIES

There are numerous ways to display the fractal shapes that the above

algorithm is capable of computing. The graphics primitives required are limited

to the standard initiation and termination commands coupled with the ability to

plot a point (or alternatively a line). Any raster graphics system, plotter or

similar technology suffices.

The algorithm can be extended to include:

- Online generator drawing to compose a generator relationship visually.

- Rotation in 3 dimensions (if your system has this capability).

- Variation of the inductive application of the generator by the inclusion of
randomness with respect to the generator constants.

Figures 4.6 through 4.9 represent a few of the shapes that this algorithm can

compute. Each figure has the generator data used to compute the shape and a

progression that shows the first two recursive iterations.

E. SUMMARY

The line intersection algorithm as it stands is not very useful for the

production of graphics images of realistically textured terrain. Its importance

results from its encapsulation of the eatence of the non-random inductive fractal

method. This algorithm demonstrates the idea sad intent of fractal functions and

their implementation within computer graphics. The potential fractal

programmer must throughly understand the salient parts of this chapter before

successfully attempting fractal image. in three dimensions (i.e. before climbing the

mouvntin Chapter 5).

' 55

A Cloud-like Shape
,nitisatin Structures

GE RATOR INIT ATOR HquIlA cral Trianglo

"lot •teration * ,

S........o.....

GBNERATOR DATA

Number of pointa& =

PaIntl t

Angle 0.4M23 reds.

Ratio = 3.4223 2ad Zteration

.ecursive

Termination

At 0.01 Inch

Figure 4.6. A Cloud-like Shape.

DA N

~w.~..--"~ ~ - ~ ,- , - - * --. ~ - *. --- ~ - .* * *. * .6-

- L•~~. .*~*

... *- •*,--•.~. 'VA ~ \ ~*

Boxes Ad Infinitum
Initiating Structures

GEN RATOR Squilateral Triangle

lot I.teration

~I~i'i1 Iteation

GENERATOR DATA
Number of points = 3

Pointi *
Angle = 0. 0000 rade
Ratio = 1.0000Pointa:

_Angle = 0. 7854 rd 2nd Ztertion. Ratio - 1.0000

Point3t'An~le = 0.4036 Padsw
___•••'Ratio = 2Wo.0o

•ARecul ve

",Terminaaiom

0.075 inch

Figure 4.7. Boxes Ad Infinitum.

67

'.l

U=

An Exaggerated Koch Curve
rimitiatime Structure:

5quilato~ riglGS RIATOR

lot Xteration

GBNERATOR DATA
Number of points 3

Angl e = 0. 0000 reds

Ratio = 0.8607
Point3:

A4 n al .= 0 . 7 8 54 r ed . 2 n d I te r a t io n

,.•
Ra~to 1 .O0000

•'1
PointS:

Anal.e = 0.0000 red.

Ratio = 1.5000

,~.B

V3

- I

IJ igure 4.8. An Exa g•ger ated Koch Curve.

:68

UN

t'

A Plane Filling Curve

This plane filling curve requires
a slight modification to the dir-
ection of the generator applica-
tion. This reversal is explained
on the next pa*e.

INIT. GENERATOR

GENERATOR DATA

Number of point-s -

Pointl 1
An&le = 1.0535 radi
Ratio = 0.a000

Poin t2
Aaple - 1.0535 rads
Ratio - 0.5000

Poin t4aAngle 0.7092 rade
Ratio 3.0000

Anrle a 0.3289 rads
Ratio = 4.0000

Poiotat

Awl.@ 0.000 reds
Ratio 0,500

Poin ts#
Angle - 0.0000 aadv

Ratio 0 2. 0W

-aontlnuod-

Figure 4-9. A Plane Filling Ct~rve.J

5o0

-.... - *

Orientation
of points After Second Iteration
P1 o P2

Angle.s neg

Orientation Orientation
of point& of points

P.1 -4PP2 Pi go P2

Angles PoeAngle. neg

Figure 4.9. A Plane Filling Curve (continued).

80

V. FRACTAL GEOMETRY FOR GRAPHICS TERRAIN

One of the most widely recognized fractal images found in the literature is of

the mountain scene. This type of terrain modeling is perfectly attuned to the

fractal technique. The reason for this is that mountains are highly irregular

shapes, with a rough but consistent texture when viewed from a distant vantage

point. It is appropriate then, to introduce graphics terrain simulation techniques

through this model.

This chapter describes the theory and techniques of simulating mountainous

terrain with computer graphics. It provides the blueprint for fractal graphics

programming within R 3 by providing general tools and a methodology that is

easily adapted to many other modeling needs.

A. MODELING MOUNTAINOUS TERRAIN

For the programmer who fully understands the essence of the method of

fractal programmning introduced in Chapter 4, the movement into programming
, J*Iin R 3 is not difficult. The primary differences lie in the quantum jump in

computing resources that are required and the requirement to perform the

generator geometry in R3 versus R2. The theory and technique of fractals does

not change substantially.

Chapter 3 provided a rough framework to begin the coalescence of fractal

programming into a workable technique. We need to develop a number of tools

from that chapter and use standard computer graphics techniques to manage

those tools. To this framework, we add new fractal functions which provide the

texture of realism for our simulated mountain.

1. The Artist's Model

One way for an artist to build a physical relief model of a mountain is to

use a frainwwork to provide structure to the model and a texturizing clay to

provide realism. The artist might use chicken wire on top of small boxes as the
frame with modeling clay as the texturizing element. His choice of clay is

predicated by the type of look that he wants to achieve. The chicken wire

081

S

provides an inexpensive and disguised method to quickly build the mountainous

shape and structure. This method minimizes the cost and time to build up the

clay.

The artist continues the modeling process after the development of the

basic mountain shape to achieve hues and contrast in the coloration. He might

achieve this by the use of natural lighting to cast shadows or by a careful

painting of prominent features.

2. The Fractal Programmer's Model

There is very little in science that is truly new or innovative. We borrow

the essence of the above idea to guide us in developing a model for the discrete

computation of our two dimensional picture of the mountain. This section

describes the process intuitively and leaves the implementation details to later

sections.

a. The Lattice Control Structure

The pixel space that we developed in previous chapters can be

divided into discrete cubic units by use of a concept from mathematics called a

latUiee (in our case we can view it as three dimensional graph paper). This lattice

serves as our controlling structure, the equivalent of the chicken wire structure

above. It is beneficial to build the lattice as a structure with well-formed

relationships, where the number of lines evenly divides the boundaries of the pixel

space and each line is a constant distance from its neighbors. By this method, we

do not have to store the lattice but can express it as a mathematical function of

the pixel space.

The lattice can be very useful in developing a rough approximation

of the mountain that we wish to model. This can be done in many different ways

but should resuit in a sick frame model of the mountain (a connected polygon

nmesh like that of Figure 5.1).

The frame can be developed through an online graphics interface

that allows the prograinuer to select a ground ietd plane of the lattice and

provide a means to visually select points for the rough outline (eusentially draw

the framework). This approach 6- useful when a particular shape is desired.

02

,Y.

A frame can also be developed using fractal functions to pervert the

lattice into a controlled random shape from a given plane of the lattice. This is a

powerful method that can be controlled via bounds on the random tools,

heuristics or discrete functional bounding of the fractal function. This approach is

most useful when a class of mountain shapes are required but no particular

mountain needs to be modeled, i.e. when random landscapes suffice.

Alternatively, the stick frame of the w'-untain can be determined via manual

(hand computation) means. This approach is tedious and limited in its flexibility,

and is not recommended.

b. Surface Texture via Fractal Functions

The next step in the creation of a mountain is to provide the

gr..p ua day to cover our stick frame model. This clay is a fractal function which

closes the polygons of the frame model with an inductive process that provides a

continuous pixel surface for the entire structure of the mountain.

The initiator/generator paradigm is used. The initial set of initiators

is the frame described above and the generator is a similar geometrical shape that

reduces in size continually until it becomes the size of a pixel and is mapped.

After the stick frame of the mountain is developed, this texturizing of

the surface becomes an automatic process that terminates when each geometrical

shape that makes up the framework is reduced to a continuous set of pixels in the

pixel set. At this point, the mountain exists in the pixel set (memory) but must

be provided color and light to bring it to life.

c. Hidden Surface Eliwination

The pixel set has the entire structure of the mountain in memory,

but we can project only a two dimensional image of one phlae onto the screen.

The fractal function which texturizes the surface does not concern itself with

local computations so many overlapping pixels are mapped to the pixel set.

"There are two reasons then, why we need hidden surface removal (in this case

better referred to as hidden pixel elimination). First we have to eliminate the

back or hidden sides of the mountain by projecting only those pixels which are

visible along the axis of sight to the perpendicular planar surface of the display

screen. The second kind of hidden pixel removal is caused by mapped pixels

-3

V! Ii tR

which were covered up by other recursive fractal descents either before or after

the pixel was mapped.

The removal of hidden pixels is greatly facilitated by the use of the

concept of the pixel set. In standard computer graphics hidden surface

elimination, the programmer is confronted with graphics primitives which are

functionaUll continuous Euclidean shapes. To effectively remove the hidden parts

of these shapes is in general very tedious and mathematically complicated. Since

the graphics programmer is shielded from the primitive -, pixel mapping, he is

functionally denied access past the simplifying abstraction 26 of graphics Euclidean

primitives. The fractal programmer must have access to this level of the graphics

mapping and thus can use simple techniques to determine if a pixel is hidden or

visible.

The simplest and most economical means available to provide hidden

pixel elimination is through the use of Z-bvfer algorithms. With this method, the

"determination of whether a pixel is hidden can be appended to the pixel set

mapping process. The Z coordinate of a pixel that is to be mapped is checked

against the Z coordinate of the pixel currently in the pixel set at the same row

and column of the three dimensional array used to store the pixel set. If the pixel

is closev to the planar surface of the display screen, then the Z coordinate is

changed to reflect the position of the newly mapped pixel.

The Z-buffer approach, while powerful, does limit the fractal

programmer's flexibility. The axis of sight toward the mountain must be

determined prior to the fractal recursive procesm so that the determination of the

line through the (now two dimensional) pixel set is known. The Z-buffer becomes

an adjacency matrix to the pixel set and can retain information about forwardly

displayed pixels only. All information is lost about other pixels that were

computed in the fractal proces. If another view of the mountain is required thent

the entire pixel set has to be re'couiputed with a new axis of sight. If the fractal

function uses (oon-tabular) random tecuiiques then the mountain varies with

each view.

• The abutraction protvid(by" Euclidean pimitives is a powerful one whtn the alternative od
pixel rnappitng is onsidetred. Without roite powerful mapping tool (such as fraital funct.44"), the

pixel te%-*I modeliag proctS i to graftal vety ddiicult.

64

Most fractal pictures consume such vast computing resources that

only one view is computed for a given picture. As more requirements for graphics

terrain are determined, a more powerful method has to be used to retain all of

the computed pixels in the three dimensional pixel set. This method requires

that all pixels be stored in the three dimensional array previously described. The

hidden surface calculation can then be performed during the pixel mapping

operation or as a separate calculation that is performed after all fractal recursion

has terminated.

As specified in Chapter 3, the full array approach requires large

amounts of memory. This method, however, allows the computed fractal

mountain to become an entity that can be manipulated versus an instance of the

fractal mountain as above.

Both methods are viable but the latter approach provides more

flexibility for the programmer whereas the first approach is a response to the

economies of scale of data processing. As new architectures are developed27 with

capacities geared toward fractal image computatit- the first method can be

eliminated.

d. Illuminating the Mountain

If you stood on the dark side of the moon without illumination, the

•'S. mountains and craters of the moon would not be visible. They still exist however,

just as our imaginary mountain exists in memory. In order to visualize them, we

must illuminate them.

x Illumination in computer graphics is achieved by varying the light

intevisities of pixels displayed on the screen. The color mixture of these discrete

points determines the lighting effect that a viewer perceives. This perception 's

not reality but another deception caused by scale and composition. A lighting

11o0del then, is one which is able to abstract the csesuce of color from a real world

- An Ideal athartur# is one with a largt main memory and pa•allel pwoeuins capabilti"

*a% K ptoceuinag tiwuats (wmhmt K is gmtcth aa the matrmum itcursite descent dattnce).

object and transform that essence into a set of color values (intensities) that

accurately deceive the human eye via the graphics medium.

The literature on computer graphics contains many lighting models

with diverse approaches to the same problem. Many of these models (like those of

hidden surface) concern themselves with illumination of continuous Euclidean

surfaces and as such, are not directly germane to our studyzs.

An object i4 space is a composition of basic elements. These elements

interact with the physics of light reflection to create the spectrum of light that

our eyes decode. In a graphics image, this process has to be simulated with

discrete lighting intensity values for each pixel. Thus, the illumination of the

mountain is a two step process; the fractal entities that are mapped to the pixel

set must be provided with a basic color, and these colors have to be highlighted

and dimmed by the lighting algorithm.

S. The basic color can be determined during the pixel mapping event of

the fractal recursion process or as a separate process prior to or in conjunction

with the lighting algorithm. This color can add realism to the picture through

heuristics which the programmer defines. Most mountains are composed of

different types of rocks and flora and these elements change at different altitudes.

This type of heuristic combined with some random control structure (i.e. to vary

the snow peak) can provide for improved realism (versus umaking the whole

mountain brown). The process of dettrmining the basic color must be

accomplished prior to applying the lighting algorithm since the lighting algorithm

can only vary the intensities of an existing color". Developing the process rif

basic color determination is best accomplished through trial and error. It is the

artistic aspect of developing fractal mountains.

The general process of computer graphics illumination concerns itself

with casting Aadowis from one object to another given a direction from an

imaginary light source and willh higllighting surfaces which are directly expmsed

to the source. A surface is highlighted relative to the angle at which the Igght

k,÷: u Thr Goturad model (taunkty intatp"Iatiae # shading) tUw •stan•o e
%.nt $0 0MAy diveM Cokoi mo kh tut. 4 the dtakil Of Co0 r ePrMets o;00 st aOct

~W,,

source's rays strike the surface. This poses special problems for fractal surfaces

due to their discontinuity at every point.

The process of illuminating a fractal surface is best aided by

divorcing the lighting process from the fractal computation process (except as

noted above). It is beneficial to view the pixel set as a collection of pebbles which

have size and position. This abstraction allows us to view the pixel as a

continuous space that can block light (cast shadows) and for which an angle of

illumination can be determined (usually in conjunction with neighboring pixels).

A well formed fractal mountain surface is completely connected (no

space between adjacent pixels in the pixel set). Thus the surface can also be

viewed as a continuous (while very rough) surface where reflected light can be

cast from or to adjacent pixels.

One lighting model which fits the fractal process is the Towrwnm

Sparrow model [Ref. 8:pp. 578-579j.

This model views an obiect as collection of fqcets which is each a perfect reflec-
tor (i.e. does not absoi.b light). The orientation of each facet is given by the
Gaussian probability distri ution functior (i.e. the smoolh surfaie of -;%e Eu-
clidean object is roughed by the Gaussian relationship). The geometry of the
facet and the dirtr.ti6rp of light (assumed to be from an infinitely distant source,
so all rays are parallel) determines the intensity and direction of specular reflec-
tion as a function of Ihe light source intepsity, the normal to the average sur-
face, the direction to the light source and the dirct1ion to the viewpoint.

"This model has to be modified to adapt to the fractal s. method. In the fractal

method, there is no need to rough the .surface to provide reflection because the

-surface 6 by design roughly textured. A method of assigning planar front, to

each pixel space has to be determined and the geometry of coneating Z i

frowitN identified. With these modifications to the lighting model, each individual

pixel's color intensity can be wvdifed for the increase in intensity associated with

the light which falls upon it.

The model xlso allows diffuse reflection (light reflected from one

object to another) which is ciritirni to bring out clarity of the fractal i0a-ge. For

further information on the indel the reader ii referred to the rf•-ýroce.
"A4

67

e. Summary of the Fractal Mountain Paradigm

To summarize the methodology we can view the process as a five

step process:

- Build the initiator framework or stick frame model of the mountain.

- Give the frame's surface te.iure with fractel functions.

- Remove hidden surfaces (pixels) from the display.

- Illuminate the surface with lighting algorithms.

- Project the surface to the screen.

B. FRACTAL TOOLS FOR TERRAIN MODELING

The tools presented in this section can be used in the creation of fractal

images within R3 . The list provides a basic set of programnming tools to guide the

creation process.

1. Equations of the Lattice

The lattice (or controlling structure) can be very useful to the graphics

programmer to implement heuristics or bounding functions on the eCs,'ntially

random progression of the fractal figure. The graphics programmer may wish to

limit the growth of the mountain by implementing a ground level plane of the

lattice and a maximum height that the mountain can obtain. He accomplishes

this by arbitrarily assigning another plane of the lattice as the upper bounding

plane. The height of the mountain can then be checked during any level of the

fractal recursive descent against this fixed plane. The programmer can then clip

the height by adjusting the random equation that controls the upward trend to

tend towards the ground again. This is an example of a heuristic applied to the

fractal recursion that controls the external qualities of the function.

A fractal programmer can use the lattice to assign the initial colors to

the mountain via a user designed seý of rules. The lattice aids the user il the

implementation of the rulks by giving reference points for inclusion of branching

conditions (tree line to snow line etc.) and can be used in conjunction with

of the initial color of a mapped pixel is usually a controlled raindom piocess, one

of the primary mi...hods of control being the lattice or some derivative thereof. As

68

the height of the mountain increases (lattice level), it becomes increasingly more

likely that it will transition to another texture. This can be controlled by adding

the lattice level as a factor to the rule that decides color.

An example of a potential lattice equation and how it might relate to the

pixel space is demonstrated in Figure 5.1. The actual lattice has been extended

from the pixel space in order to visually demonstrate how it relates to the pixel

set. In actuality, this is not the case. The lattice coincides with the boundaries of

the pixel space. Although the lattice can have a one-to-one relationship with the

pixel space, this defeats the purpose of the lattice (macro control). By grouping

cubic sets of pixels into a well-formed relationship, we can better implement

heuristics and bounding functions.

As a lattice example, consider a pixel space that is created by abstracting

the real world coordinate space for our mountain as described below. We desire a

real world space to be a cubic area established by the box 20,000 ft.

(z coordinate) by 15,000 ft. (y) by 20,000 ft. (z) This can be seetioned into a

lattice by establishing the increment of distance between adjacent lattice points

to be 1000 ft. and establishing the corner lattice point as (0,0,0)30.

The mapping function between the lattice and pixel space is then

straightforward. The size of the pixel (recall equation from Chapter 3) is

20,000 ft. =20 ft. and the lattice cubic sections contain 108 cubic feet or
1,000 ft.

equivalently 75,000 cubic pixels.

The ground level car& then be identified as the 20b0 foot level and the

bounding height can be assigned a level of 10500 feet. If we wish, we can make

the bounding heuristic more realistic by sectioning the lattice into mountainous

areas, each having different bounding levels.

J1.

SA compkuit|y arbitrary set of dimensions, iacremetas and powint.

Il ..,16[

= . 4 _ •

The Lattice Control Structure

-- 3:

LATTICE

FRACTAL lIDUNTAIN STRUCTURE
PIMk SET

Fig 5.1. The L1attice Control Structure.

Z4 70

2. A Fractal Function for Contouring Mountains

The usual method for contouring mountains uses a randomized variation

of the mid-point displacement method introduced in Chapter 4. The planar

Sstructure is typically the triangle31 imbedded in R 3. The basic methodology is

demonstrated in Figure 5.2. Figure 5.2.a shows a triangle with its first iteration of

mid-point displacement. This process continues until all triangles have reached

the desir,-d level of precision. One completed structure is demonstrated in Figure

5.2.b. TL, precision is typically lower (pixel level) than that demonstrated in

Figure 5.2.b but it was terminated at a higher level to better demonstrate the

idea. Random techniques (described below) are used to produce the relatively

accurate picture of a mountain frame as depicted in Figure 5.2.c.

In praitice, the random techniques are implemented with the mid-point

displacement function during the fractal recursive descent. The random

* techniques provide local disorder to the fractal function which provides the

computationk, structure. Results have shown that very little randomness needs to

be applied to the regular structure of Figure 5.2.b to achieve satisfactory results.

The mountains created for the film Star Trek: The Search For Spock used a

limited random number look-up table consisting of fewer than 300 entries [Ref.

71.
3. The Geom Zry for Mid-Point Displacement

The general approach to building a fractal shape as illustrated in Figure

5.2.c is to use the algorithm of midpoint triangle displacement combined with a

randomized displacement along the normal to the X-Z plane of a cartesian three

space coordinate system. A recursive procedure which computes this relationship

requires as inputs the points of the triangle. It comnputes the midpoints of each

line of the triangle wad inscribes a triangle inside of the initiating triangle by

connecting each midpoint, Figure 5.3.a. This process yieds four triangles

coincident with the plane of the initiating trisngle. When we fix the X-Z normal

at any of the midpoints, we can displace the midpoint by a discrete distance

""Any regular structure sufficts; the triangle is emy to use aad yields veqr s&isfactory
mutts.

71

4W...* N -TtT

The Triangular Midpoint
Displacement Technique

Det.ermine Connect Connect Connect
Midpoints MA to M2 Ma to M3 M3 to MI

Fig 5.2.a The Ist Iteration of Midpoint Displacement.

The Random Structure was rotated
-30 degrees around the X 4xLis to
accentuate its texture.

4Fig 5,2.b Completed Structure Fig 5.2.c Randomized Version.

Figure 5.2. The Triangular Midpoint Displacement Technique.

-S~ .72

.I ,

along the normal and determine a point, Figure 5.3.b. Since the normal is to the

X-Z plane, it is sufficient to simply modify the Y coordinate according to a
'positive or negative value. This is equivalent to displacing the midpoint along the

X-Z normal up or down. We perform this displacement to each midpoint normal

and replace the midpoint with these new points. This yields a new structure that

still consists of four triangles but with each coincident with a different plane,

Figure 5.3.c.
3

a. Midpoint of a Line in R

The determination of the midpoints of the lines of the initiating

triangle is a simple process that uses the equation of Chapter 4, and fixes the

generator ratio constant at 1. This simplifies the general equation of:
Xi + (Generator.ratio.constant x X2)

Xmld =,
1 + Generator.ratio.constant

to the well-known midpoint relationships of:
X1 f X2

Xmid = 2

Y1 + Y2Ymld = 2

ZI .+ Z2~Znid
2

• 2

The above equations completely determine the midpoints of the lines formed by
each endpoint of the initiating triangle.

b. Displacement along the X ýZ Normal

The process of displacing the midpoint along the X-Z normal is a

simple one. We need a factor such that the displacement can obtain a varied
magnitude. This is best aided by the inclusion of a random variable as a multiple

of sonie scaling factor that is added to the Y coordinate of each computed

midpoint. This process is demonstratcd in the following code seguient:

Randvar getrand(Seod);
Pointl~y] Poiatily] + (Scale° Randvar);

44 '73

P3

Four Triangles
are

created for each
&

3

M Matriangle initiator m

P, Uj Pa

Figure 5.3.a. Triangular Midpoint Displacement.

y axisComputed isplaceAent

z i sAfter lot displaeseaea

..

Figure 3 c cmplete Rando placneTiage

Figure 5.3. h-b dm ipit Displacement AlogchniqueNrma .

7'

A valid question is, why the normal to the X-Z plane? There are

three good answers to this question. Using the normal to a fixed plane simplifies

the computation (eliminates the need to perform planar computations at each

recursive division). It also is generally the direction that we want the mountain

to grow. The most important reason however, is related to the gapping problem

(described below). With a fixed direction for displacement, there is no need to

communicate the direction of displacement along the, normal between adjacent

side computations. The recursive levels that compute adjacent sides are

functionally discordant. It is demonstrated below that the solution to the gapping

problem (inconsistent random numbers) which creates the need to communicate

along discordant recursive levels is algorithmically difficult to solve and thus

should be avoided.

c. The Gapping Problem

One problem exists for the midpoint displacement procedure which

utilizes a random displacement along the X-Z normal line. It is indirectly caused

by the data locality aspect of the inductive process of the recursive fractal

descent. The problem exists when two adjacent sides of two adjacent triangles are

not displaced with the same value. Each side is computed during independent

levels of the recursive descent so there is no practical method to communicate the

random numbers for the displacement.

The gapping problem is illustrated in Figure 5.4. For the two

triangles that are extrapolated from the structure, there is an unknown

relationship that is the random variable used to displace the coniuon midpoint.

If triangle A uses Rand - 0.3 and triangle D uses Rand = -1.07, then the

displacement for each adjacent midpoint (whirh are at the start coincident) is

a -,skewed in the opposite d'rection. This creates a pp in the fractal landscape that

will (in all likelyhood) not be filled by other fractal shapes front neighboring

triangles. We need an algorithm which can insure that each midpoint (which is

always sharted by two triangles) has the saame displacement along the normal to

the plane.

i75

N

d. Solving the Gapping Problem via Random Tables
The solution to the gapping problem is straightforward if the

programmer adopts the random number table as his random function

implenentation. The goal is to match adjacent triangles with a seed or

displacement within the random table so that the random number returned is

equivalent for each coincident midpoint.

There exists a symmetry within the triangle of Figure 5.5.a that

allows such an approach. Ideally we want the point Ma to be displaced by the
same magnitude when triangles T2 and T 4 (highlighted by textures) compute

their random numbers for M.. This can be facilitated by the inclusion of a table

seed for each recursive call to the midpoint displacement routine and by rotating

the orientation of the midpoint triangle (the triangle created by the three

computed midpoints) labeled T4 in Figure 5.5.a. This rotation is performed in
- relation to the random table and not in relation to the Cartesian space. It is

accomplished by adjusting the order of the points in the recursive call.

The order of the points for triangles T, T 2 and T 3 are as described

in Figure 5.5.b and for T 4 as described in Figure 5.5.c. All four triangles generate

a recursive sequence and use the same seed to the random number table. The
random numbers retrieved from the table must observe the order of asignment

that is demonstrated in Figure 5.5.d. For example, the line segment formed by
the first two points (Pi and P7) input to the midpoint displacement routine

determine the midpoint RI. This midpoint is assigned the rarndom displacement
from the table correspooding to the eatryuseed. The next midpoint retrieves the

table entry correspoidisig to -eed + I and so on.

If this technique is followed the %quezace of randomh numbers will

nmoeh-. up az denontrated in Figure S5,e. Tie recurive cals correspond to the
code sMeiumt in lFigure 5.6.

To

The Gapping Problem

Genera ted random structure

Ini ri1t

.

ADJACENT TRIANGLES SHARING
A COMMON MIDPOINT

Sh common midpoiant

AFTER MIDPOINT DISPLACEMENT

Cap creoted by diacoanti'.uouw
r&ando. displaco"..pn o aloa;g

.•Shrod common aidpoioc

Figure 5.4 The Gapping Problem.

S77

*L

V

Solving the Gapping Problem

. Shred c a midpoint

i ~~~~ :.... :...:.

Figure 5.5. a

p1 P2 PP

¶4Figure 5.5.b Z.R.I Figure 5.5.c

2 £ P2

"-i- Given that the input to the random tebJi io seedai

A Figure 5.5.d

ti

.3 Figure 5.5.e

"Figure 5.5. A Solution to the Gapping Problec.

78

Wi7

LOAD THE INITIATING TRIANGLE
Seed = 1;

frac tniangle(P 11P2,P3,Seed)

frac. trlangle(P3,P2,P3,Seed)

f

DETERMINE DISTANCE BETWEEN ENDPOINTS OF AN INITIATOR

If (DIST < Pixel.length)

@1 PlotypixeIO;,
return;

COMPUTE THE MIDPOINTS (MI.M..M3)

ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed)
ADJUST THE Y COORDINATE FOR M2 Using Randtable(seed+i)
ADJUST THE Y COORDINATE FOR M3 Using Randtable(Seed+2)

Seed Seed +3;

/* Triangle T, '
frac triangkv(M,,P2,Mj.Sccd)

P* Trimigle T2
fractrian lc(NIM,3MP 3 .Seed)

/* Tris.igl T:,~
frac triwirlv(P 1.M,,M3,,Sccd)

/* Triazigle T,4 /
frat-triazagk(NI2,M 3 ,M1,SeCd)

Figure 5.6. An Algorithm for the Midpoint Displacen-ent Techniquc.

4. Random (Stocastic) Fractals

One common complaint about computer graphics images and animations

is the artificial perfection of the displayed shapes. Our mind eubconsciously rebels

against the order that is displayed, our expectations about the rough reality of

nature are not satisfied. The use of randomness in generating fractal images is

necessary to approximate the observed disorder of nature. An example is the

Koch curve. Although it resembles a snowflake, it lacks the realistic look that

experience trains our eyes to see. In a mathematical sense, the Koch curve is

beautiful; as an approximate to nature it lacks appeal.

To approximate the rough texture of nature, we are forced to modify the

well-behaved mathematical relationship of the initiator-,generator in a controlled

manner to add variety to our computed image. This modification is usually by

the inclusion of a random variable into the control structure widhin the fractal

equation. The random variable must exhibit restraint. It cannot be allowed to

vary wildly without structure.

One of the most appealing random functions which prowides very

satisfactory results in frrctal images is the normal distribution3 The normal

distribution (as opposed to a uniform distribution) approximates the -xpected

local disorder in nature (at least experimentally).

a, The Normal (Gaussian) Distribution

The normal distribution is used throughout the natural scitce fos

, many applications. It was first derivei as an empirical result of the observed

error aboit a true value that normally occurs when teaseuraw4aslt are taken 4" a

natural event. The symmetry that was observed fron error measurement and

"sanpling svgeated that there was a natural order to such observations. These

Cetpirical results spurred natural scientists and watheinaticiims to try to fit a

curve to the observed graph that behavec as probability requires (i.e. the sum of

the area under the curve equals unity). Many of the early scientists

- Often referd to " the CGattutan doinbutooa. the aoamal d-trinbt.t60 W tke st4.drd b1*0
curve to whidh every utudeat tis &cUOM@ad

80

so.-.. . ,

V~****

referred to the normal distribution as the law of error ia deference to its roots in

experimental natural .,ience.

Many functional charactvrl - s6 of the normal distribution were

developed33, but credit is usually attriwuted to Carl Frederic Gauss (Ref. 9:pp. 1-

11i who formulated a least squars approach, published in 1809 in Theona Motua

Corporum Coelestium. The form of the normal distribution was not finalized

until the early 2 0 'h century.

We take our definition of the normal distribution from [Ref. 9:pp 181.

refer to Figure 5.7.

Definition:

The probability density function of a normal random variable X is given by:
Sis the mean, a is the standard deviation

and 03 is the variance.

ex4 tx-012
cPV21 2oz

tAhere co<x< c -oo< p <c andv>0

The Normal Distribution

SCALBE
'hors k Ser.t /

pL-o ,p jp4

Figuire 5.7. The Normal Distribution.

Many tthfotl~tlt caq lay daiem 10 Fourw tht ial datonbut, moo n~oiblb. P1.
trt S4mat de Lapl"@ and Abralam 4e Mosvre R#(9pp I I

':' 81

B• * This definition is the general case of the normal distribution. We are

interested in the behavior of the function and need a practical way to deter-nine

a random number that we car use in the parameter of the normal to the plane in

the geometrical relationship described above. To facilitate this, we simplify the

general normal distribution to the well known standard normal distribution,

illustrated in Figure 5.8. The standard normal distribution function is the special

case where # = 0 and or I. This reduces the general equation to the simplified

equation:

f8(x) - exp 21

The above functions describe the behavior of a normal random

variable. We need a function that returns values from that function which will

observe the period of the normal distribution. This means we need a string of

real numbers , an assigned range about a mean that will observe the

frequency of the normal distributioii.

SThe Standard

.Normal (Gau.sian)
SCALE: Distribution

01* 1horz a 5vert 0 0.0
N

- 0. - c=-1.02

N.(x) 2 2

' -3 -3 -1 0 1 3 3

j- 09. 37X-

Figure 5.8. The Standa rd Normal Distribution.

82

b. Standard Computer Random Functions

Some computer systems provide a random number generating

function which observes the normal distribution. If this is provided, then it can

be used directly (after scaling) as a parameter to displace the Y coordinate in the

geometry of the normal to the midpoint displacement as described above.

Many computer systems only provide a random number generating

function which is uniformly distributed over an interval of integers. This is a

p8cudo-random number. Such a function, when given a seed, will produce a

sequence of numbers distributed over the fixed interval defined by that system.

The interval is typically proportional to the maximum integer defined in the

compilers of the system. A normal distribution routine must then be defined that

transforms the uniform random numbers into random numbers which behave
according to the standard ncrmal distributLon function.

There exist transformation functions that take a unifoirm random

0 variable distributed over the interval [0,1] into an approximate normal random
variable over -oo < x < 0014. This requires the uniform random variable to be

mapped into the interval [0,11 and then transformed by the normal

approximating function.

To transform a uniform random variable distributed over an interval

r1 [O,maz int] while maintaining the distribution density, requires the following step:

UNF 0,mazjnt I
*UNF 10, = maz int

One commonly used function that transforms uniform random

* variables into normal random variables is found in [Ref. 9:pp 49]. This function

uses two uniform variables from [0,11, denoted UNF1 and UNF2 , and computes

two normal random variables, denoted NORM, and NORM 2.

NORM, = ,/--2logeUNF, cos(2irUNF 2)

NORM 2 = •(-21ogeUNF, sin(27rUNF 2)

"34 This is how most standard system provided computer subroutines perform the operation.

83: -S."

- -. .

Appendix B contains a C UNIX routine that implements an algorithm to

compute the uniform[O,1] -- normal [-oo,+oo] transformation.

A programmer must be very careful when dealing with random

number generators from standard system subroutines. These routines vary widely

and can provide good to barely adequate results. When the normal

transformation routine is written, the programmer must verify experimentally
that his function adequately models the normal distribution. This process is

illustrated by Figure 5.9. Appendix B also contains experimental results which

verify the transformation.

The purist may not accept the results displayed in Figure 5.9 as an

accurate transformation (there appears to be a skew to the negative direction).

We must remind ourselves that we are trying to approximate the roughness of

nature and minor random skewness will not deter us. If the programmer demands

a better approximation, it is a simple process to expand the sample space of the
0,L test and build a tablk with exact proportions by selective deletion of skew

density.

c. Random Functions versus Table Driven Methods

The application of a random modifier in the midpoint displacement

technique can be achieved via two methods.

- By invoking the above function iteratively as a variable.

- Or by a variable returned from a table lookup operation from a random
"table.

The choice of which method to use depends on the programmer's application but

"each has its ramifications.

In general, the table lookup operation is considerably faster than the

functional method but must by its definition limit the amount of randomness it

contains. The major issue however is the need to reproduce a figure under some

requirement for fixed terrain. This issue was the driving force for Loren Carpenter

from Lucas Film in determining that he needed to use a table driven method to

produce the planet images for the film Star Trek: The Search for Spock [Ref. 7J.

He had to be able to fix a space where the images of the actors could be imposed

84

Experimental Results f or the
Computer Generated Normal

Distribution
Sample Space:

.500 Random Events,22

IxPerimentsl Results
With a Normalised

Transformation Equations Uniform Distribution
Over [0.0,1.0]

From Uniform Distribution

Over [0,I] to the Normal88 8

Distr~ibution Over -w(x(~~~w.:

8..

Sace

202

-3.0 0 03.
Figure ~ ~ ~ ~ ~~.. ... Exe.ena.esl. fo. omue

generated ~ ... norma d .trbuio ove.. ~

.. 85.. . .

onto the fractal images and coul)d not allow the fixed space to change with each

frame computed. This is the major advantage of the table method. By retaining

a 8eCd to a table of random numbers, you can reproduce the sequence of

displacements along thew normal during the fractal recursive descent.

When you consider the existential quahi4ies of randomness you are

cowEfronted with basic questions about determinisip antt order in the universe. It

i: not. at all clear which rulec chance. IV siijr rse, we can deceive perception

with a relatively small table of random numnicrs.

The question of how much rantdzm,-.,ewz is enough to provide for a

visually appealing texture is not completely clear, In [Ref. 71 Smith demonstrates

a variety uf shapes computed with the same algorithm of Figure 5.6 using

random n;xmbei, tables of different oizes. He demonstrated that as few as five

numboers can &uffice to provide enough local disorder to give the viewer the

acceptable textthr of a mountain. If the mountain segments are viewed at the

correct perspective .si scaje, thig perception is clearly felt. A trained

aiatheinatician would find the five element mountain siatistically unappealing

however. A true st-,wlhatic consi•,u-tion requires a continuous random function

irather than a discrete table method. As wiog as the goal of our computations is

mnerely to deceive ihe graphies viewer, it suticka to use the random number table.

The table must be large enough ,'Z provide for an appealing textlural perception.

A complete C program that c'omputes a triangular mountain segment uisip. the

random displacement midpoint technique is contained in appendix C.

86

VI. SHORT CUTS TO MOUNTAIN SHAPES

Since the fractal mountain computation (the full approach with hidden

surfaces etc.) is so costly in terms of resources, it is important for us to consider

shortcuts that can lessen this burden. This is best realized by utilizing the hidden

surface and curve fitting capabilities that are provided on some advanced

graphics systems.

Our goal is to match the well known bicubic surface procedures with the

structure computed by the simple fractal algorithms. This is best accomplished

by modifying the triangular midpoint displacement technique and using a

rectangle35 as the basic geometric building block. Most of the cubic surface

algorithms use the rectangular structure as their basis, so it is easier to adapt

them to our fractal structure.

When the fractal algorithm of Figure 6.2 has its computations terminated

before reaching the level of pixel size, it yields a connected rectangle structure

like the one shown in "tiguwe 6.3. This structure is a connected Euclidean

structtore that can be used & a Dse on which other algorithms can be applied.

Cubic equations cati fill the polygons to an arbitrary precision and standard

hidden stvirfate aOorithms caa eliminate the hidden sides of the computed

surfaces Simple lighting algorlZ'Ims can be applied to the computed surface to

achieve f realsl.ic iitiyig effect'. This is holw Voo and Carpenter created their

fracwal ,urfac'es in IRJES. 7).

A. RECTANGULAR WDPOINT TEi'CHNMQPGk

Molifying the triaagufar ingpoint algithin •f chapter 5 is a straigh•forward

process that i-ttroduces no iiew niath&enatic' or 'difficulties. It consists of a

proce•,re to splii the midpoint.t of euwi side nf tho 'ectangle and g procedure to

find the ceter of the re•tanyk1•", From these lfvQ points, we construct four scaled

35 We actually uxqe a non-plantar fgo gided polygm. - We refer to the basic structure as a rec-
tigle Lo sittplify the termimiogy8

"36 Gourau%,. shading fo~r exatuple.

rectangles, as demonstrated in Figure 6.1. The five shared midpoints of the

generated rectangles are then displaced along the normal to the X-Z plane

according to a random Gaussian value. This process is exactly the same as for the

triangular algorithm of chapter 5. The gapping problem still exists and this

requires an algorithm to rotate the rectangle relative to the random number table

and the starting seed to insure that adjacent midpoints are displaced relative to

the same random number. The basic methodology is displayed in Figure 6.1, the

algorithm is contained in Figure 6.2 with sample results in Figure 6.3.

IN

88

Computed

Four Rectangles Midpoints

are created for
each rectangu-

lar initiator.

Computed displacement

Y axist

a x a..x.......

......v ...Y.

..l..

..

Main()
{
LOAD THE INITIATING RECTANGLE
Seed = 1;

frac rectangle(P1 ,P 2,P3,P 4,Seed)

frac rectangle(P3 ,P2 ,P3,P 4,Seed)

DETERMINE DISTANCE BETWEEN ENDPOINTS OF AN INITIATOR

If (DIST < Pixel.length){
Plot point();
return;

COMPUTE THE MIDPOINTS (M 1,M 2 ,M 3 ,M 41Mc)

ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed)
ADJUST THE Y COORDINATE FOR M 2 Using Randtable(Seed+l)
ADJUST THE Y COORDINATE FOR M 3 Using Randtable(Seed+2)
ADJUST THE Y COORDINATE FOR M, Using Randtable(Seed+3)
ADJUST THE Y COORDINATE FOR Mc Using Randtable(Seed+4')

,S•ed =Seed+5;

/* Rectangle R, '/

frac rectangle(P,,M1 ,McNM41 Seed)
/* Rectangle R2 VI

frac rectangle(M 2 ,MCM 1 ,P2,Seed)
/* Rectangl R3 R/

frac rectangle(M 2,MCM 3,P 3,Seed)
/* Rectangle R4 V/

frac rectangle(POM 31,MCM 4 Seed)

Figure 6.2. An Algorithm for the (Rect.) Midpoint Displacement Technique.

14

Ngo4r

Rectangular Mountain Fractal

CenrTz rectce~a2

The recursive tefrmonation eveao ws, J/2 iocb.

"Figure 6.3. An Example of the Rectangular Wo-:- m-,tctal.

A.9

B. PARAMETRIC CUBIC SURFACES

A complete description of parametric cubic surfaces is too involved to be

'I described in * study. The theoretical basis of cubic curves is not directly

applicable to &;'.ýctal geometry. For a complete description refer to [Ref. 8:pp.

S514-536]. If the reader is already familiar with cubic curves and their derivations,

he can skip by the section on cubic curves to the section that details the

application of cJ-)ic surfaces. For apy reader who has not been exposed to the

derivations of -a'anmetric equations which yields cubic curve computational

engines, it is recommended that he read the following section so that he may gain

insight into the mathematics of cubic surfaces. Detailed knowledge of cubic

curves is not a prerequisite to the successful use of cubic surface fitting engines

with respect to fractal surfaces. It is helpful, however, to understand the

underlying mathemnatics whenever conned equations are used.

1. Cubic Curves

The general method of cubic curves has as its basis that any continuous

curve in R 3 can be expressed in parametric form. This form relates the points

z,y,: with a parameter t such that as I varies within some range of values37 the

equations solve for unique points on the curve. Specifying two endpoints and two

control points of a segment of the curve allows us to define certain constraints to

be applied to the parametric equations. These constraints allow us to mlauipi4mte

the parametric form of" the equations to yidd a simple vector produc't definition

of that segment. Once this vector product is established, we caan solve for points

on the curve by picking discrete values of I and solving for z-,z in turn. This

yields a discrete approximation of the curve that can bW as prtcise as needed.

a. Parametric Cubic Equatimis of a Curve

A parametric cubic curve is one for which the points in R3 (x ,y.:)

are each represented as a third-order (cubic) polynomial of NoGIV paraWeter t.

IBecause we deal with a finite swgiznt of a curve, we limit the range of the

•I •: I may vary between 0 and I for exarnplt

49 02

e.l

parameter t to the range, 0 •<, <* 1. This yields the equations:

x(t) = at 3 + bxt 2 + Cet + d'

y(t) = a0t3 + byt 2 + eYt +

£(t) = a~t 3 + b~tZ + ct + ds

Each equation can be expressed as a vector product as x(t) is below:

ax
bx

x(t) = It 3 tl t 1] C

This vector product separates the distinct parameters of the parametric equation

into the unknown coefficients of x(t); faxb~cd, and the parameter t that we

wish to manipulate. Through this separation, we are able to manipulate them as

algebraic entities. If you multiply the vector product out, you find that the

vector product is equivalent to the parametric equation that precedes it. Denote

this product as x(t) = TC,, where

T t ! 3 ' t3 t ii

aMid

ia|-x

dx

The vector T iM the same for x(t). y(t) and a(t).

We now estabhl'. constraints (as a set of control poinjt) for the

equation. (t) evaluated at the bounds of the range of the araueter *, (i.e. t 0

and ti). We considrr four equations of x(t) and its first dcrivative x (t) wherv

thrse boundary conditions yield four known points.

x(t)--T(C.; when evaluated atam0. --. x(O) - 0 0 0 JC
x(t)- TC(; when evaluated it-• 1. x(l) 11 j1 1 u Cx

93

and since the first derivative of x(t) is:

x'(t) = 3t2 2t I O]Cx = T'Cx

x'(t)=T'C.; when evaluated at=0, -. x'(0) = 10001 0]Cx

x'(t)= T'C.; when evaluated at= 1, -o x'(1) = 13 2 1 0]Cx

We now have four equations that can be grouped into a vector product:

x(o) 1 0 0 1
x (1) 1 1 1 1
x'(o) = 0 0 1 X
x'(1) 3 2 1 0

We recognize that x(0) and x(l) are lihe endpoints of the curve

segment and x'(0) and x'(1) are componeints of the tangent vector at the

endpoints (y'(t) and 2 (t) are the other components). With this knowledge we

are able to solve the left hand side of the equation above. These points (that we

call P, through P4) are the control points that we establish for curve fitting'.

For a given curve segment the control points are fixed. We rewrite the equations

above with respect to these known control points:

P , 1 0 0 0 1
P2• I I 1 1

P. 00IP31 1 0 0 1 0 1 'X

P 4 3210

Delloto this equatiuo as:

SGz M.MCx

The matrix (GO% is often rteerred to as the geomwtry of the cubic curve and M as

the b~s

This equation hex the 4 by I tow vector Ca a the only unkilown.

The eliment,% of thi(CS vector are the pranwtkrs ('fbg~c,,dx) from the

" WC UW',t&A opJV*O 1 •-en iht 0b4 tbe four poaa UT th t sa Wiput to oua rou-

""P-

V%
~9

parametric equations. We can solve this equation for these parameters and

establish the parametric equations with the only unknown being the parameter t.

The parameter t can be discretely varied over its range of 0 < t < 1, providing a

set of points on the curve. It is through these constraints that the control points

conlrol the parametric equations and produce an equation thrt can produce a

discretely sainpleable curve segment in three space. Solving the equation for C. is

straightforward:

Cx = M-'Gx

Substituting CS into the equation for x(t) yields39:

x(t) = TM'-'(;

!ziaiilar arguments yield the equations for y(t) and z(t):

y(t) TM- Gy

Z~t) Im c

"The "iratrix M is constant for all three equations and is usually

Sdvý&otuA by- tl., type of surfaze that it relates to Bezier -. Mb, Hermite ". Mh

etc. It is- through the control lwints and their interaction with the constraints

that the models l3kzier, B-ý4pi.., Cwratdrul Spliuw, Fergus.oi (Herwite or Coon"')

surfacee Ott. uodify tiwe praiaetric equationu and provide diferent 'CurVe fitthig-

For-each model. the mitrix N-t,,dt M €O ASMt throughout PI1

Comsutat-iot1o. To use the model retquirc% the deerintu f the control, point,%

(in otnjunction with how thoy, reoate to til 'Curve) and a vitor multiplication

""nlgiiw. Sior- voctor piltwine t¢o!pUt4ns are h-idally $Uitfd to Computers, th•.

-i.iio hbecomns a fut tochnotogy for curve fitting with an i*UWlViwC appeal for a
4i}. pro~raz~wnr.

We-€ have juim 4prmanmn Ah ihtrmct vnodd equal mao wia).

I05

b. An Example: Bezier Cubic Curves

We consider the model called Bezier [Ref. 8:pp. 514-536]. The Bezier

model defines the position of the curve's endpoints and uses two other points (not

on the curve) which define tangents at the curve's endpoints (by the line segment

joining the tangent points to the endpoints).

The matrix M is derived by setting the following constraints (see

Figure 6.4). One endpoint of the segment is located at PI:

x(0)= P1

The other endpoint is located at P 4 :

x(M)= P 4

The line segment from P, to Pý defines a tangent at P1 such that x'(0) relates

to the points PP: as below:

x'(0) = 3(P2-Pl)

And similarly for the tangent at P 4 defined by P 3,P4:

x'(1) - 3(P 4-P 3)

Solving for C. in terms of Mb yields the cubic Bezier niatrix as:|ii

Hec h -1to orxt s 3 3

-1 3 -31

3 -6 3 0- CX - 3 3 () 0 GX

1 0 0 0

Hence th~e equation for x(t) is:

- 3 -3 1 IP

3 -6 3 0 [P,
xt) [, t €zj_3 3 0 0 IP31

1 0 0 0 p4

100

Bezier Curve
.rqent, defined by

P1 P 2 •line segment. /12

SP4

at defimed by

PP3. gie saeat

Figure 6.4. An Example of a Bezier Curve.

The process of creating a Bezier curve given t0 above parainetric

cubic engine is a !imnple process of rotapting discrete points on the curve by

substituting values sAlong the rdnge of t and fitting the curve by connating each

po0,1t wilh a line Tegme'•. This pro.'ides an approximation to the curve that ican

be proceshed at an arbitrary precision by incrementing 6t with smaller and
l ~ ~,•maller '.eg |s

The process of shaping a curve is accomplished by increasing or

decreasing the two endpoint tangents formed by the four control points. It can be

viewed intuiiveq by thinking about each tangent as a force which pulls the

curve in the diriction of the tangent until the force from the other endpoint

overcornes ih. original at tlie midpoint. The two endpoint tangerits work against

one another proomrtional to the distance of 61 fron each ei dpoint.

Exteundian 1he above method to cubic surface sections is accomplished by

adding a new parameter s that we vary from 0 < j 1 I as we did with the

4 07

A',

parameter t in cubic curves. The connection between cubic curves and surfaces

can be made by fixing one parameter and varying the other over its range. This

yields a cubic curve. The equation is of the form x(s,t) and is written as:

x(s,t) = allS 3t3 + a 12 s3t 2 + al 3s3t + a14s3

+ a 21s2t 3 + a22s2t2 + a 23s2t + a24s2

+ a 31st 3 + a 3 2st 2 + a 33 st + a34s

+ a41t 3 + a 42t 2 + a 43t + a44

Written in the algebraic form:

x(s,t) = SCxTt

where S = [s3,s2,s,11, T = [t3,t 2 ,t,l] and TV is the transpose of the matrix T.

The complete alge'braic manipulation of the equation to arrive at the

equation below is similar to the curve process as described in the previous

section. Its details are covered in [Ref. 8:pp. 524-536]. The equation for a Bezier

surface patch is:

X(Gt) = SMbQMbt T t

where Mb is the same matrix as in the curve equation, Mbt is its transpose and

Q. is the x component of sixteen control points of a surface patch. Bezier

surfaces are intuitive in their appeal and serve the fractal rectangular mountain

well. To apply the technique to the motmntain of Figure 6.3 requires the

application of a routine that takes the non-planer four sided shape of a computed

iaitiato*- and develops a connected sixteen point figure as illustrated in Figure 6.5.

The inclusion of a l1ezier subroutine at the recursive termination event after this

figure is developed matches the sixteen point figure with a smooth cur've. To

achieve ,Age continuity requires that adjacent tides have the saute four points in

proper juxtal"oition in the sixteen point matrix. This is also denmonstrated in

Figure 6.5. I1czier surfaces guarantee such continiity.

' P

.

U

Bezier Surface Patches

Shared ecdge points

I B ,

SB , B 2•9"A.
ltIfor R, = B. Bii B9 B1--0E

P3 B, Bl: P,

P. P , H- P 83

Buu H. B 4 U, B8

QforR,= Btu 3. B1
. P3 B11 nil P,

Figure 6.5. Matching Bezier Surface Patches to the Fractal

Rect~angular Mountain Structure.

00

"4'

VII. CONCLUSIONS

A. DIRECTIONS FOR FURTHER STUDY

Fractal geometry as an area of research is very new. Because of this, there is

a great need for refinement and exploration. What is known needs to be refined

into a set of workable techniques with reasonable, simple terminology as its root.

The areas that are unknown need to be explored intrepidly. With this goal in

mind, the following paragraphs quickly review some areas of prospective research.

The reader is invited to explore their potential.

1. Development of New Fractal Functional Methods

The current tools of fractal functions are tentative and limited in their

ability to yield insight. New applications of the recursive initiator- generator

paradigm are waiting to be discovered. This area of research is especially good for

the graphics programmer since the graphics medium is currently the best method

for fractal experimentation. As these new functions are developed, they can be

shared, yielding a glossary of modeling functions that can be molded into a

cohesive theory40 . Related to this is the need to develop a functional language

(within the language of mathematics) of fractal geometry to aid in the

communication of ideas and in the eventual coalescence of the theory.

2. Fractal Lighting Model

The current state of .he art in computer graphics lighting models lacks a

complete model for the pixel sat paradigm that was introduced in Chapter 5.

There are a great many practical applicatiomias which demonstrate successful

lighting techniques but no published model exists. This indicates a piecemeal

undisciplined adaptationi of the Euclidean b-ased lighting models. Ray tracing

techniques look promising, "- does an adaptation of the Torvance-Siprrow

lighting model that was discussed in chapter 5. A good pixel set lighting model

would open the avenue of complex rtrain utdefing to a much wider audience.

••"~~ \a Xturv's (firat|a map?

SAs evidenced b tbv fatal pittutws that have been pubiwshed.

100

3. Fractal Music

In [Ref. 71 Voss demonstrates the application of fractal recursive
1

techniques to I- noise and has produced interesting if not pleasing tonal results.

It is safe to surmise that sound is a roughly textured physical phenomenon and

that it may be possible to create or decipher sound using a fractal model. Such a

discovery would aid science in the area of (rapid) speech recognition.

4. Fractal Conmputer Graphics Architectures

It is clear from our discussion that new computer architectures need to

be developed to support the pixel set paradigm and the computational aspects of

fractal functions. Such special architectures require parallel processing capabilities

coupled with vast memory resources. A real-time fractal terrain image generator

is one such architectural possibility.

5. A Better Fractal Definition

* Fractal geometry is currently attaining a wide audience. Because of that,

it is time that trained mathematicians tackle the problems associated with the

imprecise and unworkable current definition of fractal sets42. That definition uses

competing definitions of dimension, each of which is somewhat difficult. A new

definition could be based on a fractal set's functional or statistical qualities. Suchi a definition scheme must provide tools to further its workability.

,••

Sadl.y. tbert ha bftn lnitle attention from the mathemnaticl• Community, although tbat is
-bansiamg It is with grtt ttmidity that one &ec" fractal gCOmetr, without such scrutiay.

101

B. CONCLUSIONS

FractaJ geometry is an old idea that has found a new application with the

advent of computer imaging techniques. Its acceptance, has spawned a great deal

of research and has provided a new tool to observe nature through a different

perspective. We must be careful to insure that our findings are in fact valid. We

also must begin the coalescence of the many techniques that have been developed

in order to control the growth of this concept and to attain true scientific

acceptance. Without this acceptance the theory will be criticized (validly) as an

imprecise and unproven idea43 . This would be an Unfortunate occurrence because

of the potential that fractal geometry possesses.

It is the hope of the author that this work has illuminated the subject of

fractal geometry and that it will aid others in their research. The purpose and

essence of fractal geometry is based on simple concepts. The reader must not be

overawed by the current literature and should retain his perspective with a mild

dose of skepticism. He must not be blinded by skepticism though as the potential

of fractal geometry has not yet been realized. In the final analysis, we expect

that even the skeptical reader will discover the mathematical beauty and

applicative power that fractal geometry possesses.

I

SThtt of ui the cmt stat of afTa with frtal ga y

: • 102

APPENDIX A: FRACTAL COMPUTATION IN R2

The first routine is the main routine which initializes the data for the Koch curve

generator and initiates the recursive process on each side of the initiator triangle.

The second routine is the recursive subroutine which performs the generator

replacement until the recursive termination event is reached. The termination

event is defined by the precision of the desired output medium.

KOCH.C

1*

This is the main program which controls the initialization of
the koch generator parameters and initiates recursive operations
on each side of the initiator triangle.'/

P Global generator and initiator data */
int Generator._points;

/ The number of points in the GENERATOR I
double Genangle~luj;

/* The angle formed betweev init-Pointl
and genyoint 1

double GenratioflOj;
/ The between initiointl to genpoint and

gen [oint to initypoint2 Q/
double Tan theda(lOI;

/ The tangent of the wngle formed between
init -tintl and genapoint "/

double Curjyoint[201[21;
/" Vertices of initiator Structume ./

int Object points nmb;
/* The number of vertices of the initiating structure "/

* include <iuath.h> /" Standard UNIX inluce file for math library "/

#derine x 0
#define y I

105

/* BEGIN MAIN PROGRAM /

mnain(){
/* Local variables /

int I;

/* Initialize global variables /

/* Initial points of the INITIATORS for demo */

Curointloljx] = 4.0;
Curypoint[0[y] = 3.0 + sqrt(3.0);

Curjyoint[l][x] = 5.0;
Cur.joint[lilyj - 3.0;

Cur7_oint[2(xl = 3.0;
Cur_.point[2][yI = 3.0;

/' Remember to close the side of the triangle '1

Cur_.pointI3I[xI = 4.0;
"Cur-point(311yj = 3.0 + sqrt(3.0);

Objectjpnts nmb = 3;
Generatorjoiit.s - 3;

/ Angle (in radians formed between initpoiutl and gen izt
for demo)

./

Gensangletil - U.0;
Gen angle[21 - 0.4712M88;
Gen s 0gle31 - 0.0;

/* Ratio of dli•tance between initjyoint! and gen poiat(i) and

distauce between geanpoint(i) and iaitypoint2 "/

Gen ratloill 0.5;

G~en ratw'3 2.0;

10.

/* Tangent of angle between initjpointl and ge__point(i) si
for (1=1; I <= Generatorpoints; I++){

Tan thedallj = tan(Gen ang•eill);-)

/* BEGIN RECURSIVE BUILD OF ALL INITIATORS INTO KOCH CURVES 1

/* The Koch curve is defined in the infinite bat our recursion
will terminate after the distance between points becomes less
then the length of the precision. */

for (I-0; I < Obectt_pnts nmb; I++)
4 {

generate(Cur pointilll(x,Cur.point~l[yl,
Curjpoin4tl+ 1I x1,CurJ.ointjI+ illyl);I

/f END MAIN 'I
1

4

q++.

4++. *.-

.4-'

GENERATE.C

/.
This subroutine computes the generator from a given set
of points in R2 that define a line segment which is the
initiator. The routine is recursive and terainates at a predefined
precision that is input to the subroutine.

j* External global generator data; defined in main subroutine /
extern int GeneratorUoints;

/ The number of points in the GENERATOR */
extern double Gen angle10]j;

/* The angle formed between init pointl
and gen. point 5/

exterm double Genratio[10l;
/* The between inityointl to genpoint and

gen yint to init.oint2 "/
Sextern double Tanthedal I0l;

"*" /* The tangent of the angle formed between
initj ointi and gen&point

*include <mwathh> / Standard math include file for UNIX lib /

/0 BEGIN' RECVRSIVE PROCESS 'I

/ • Parai•,et~'r vaviabls * /

doube XL.YIX2.Y2,pcision;

/* Local var..... "I
long N,

double P*frrfavJ312-
double GxiwI•ItOf120J.DIST;
dotil Soe nh , lr k n
diabte X jp.Yj~rpjkrp~b enTP;

Sdouble ton thowmad~one.ia-o•wiuone;

tva en u tt . -'and 100U),O.0; otoe 0. j.0; zero 0.0, minus one - -1.0;

10

U,- It

/* The Koch curve is defined in the infinite but our recursion
will terminate after the distance between points becomes less
then the length of a pixel. */

/ Determine distance between point I and point 2 /

TEMP = (X2 - XI)*(X2 - X1) + (Y2 - Yl)*(Y2 - Y,')"
DIST = sqrt(TEMP);

/* IF DIST less than the precision then terminate this
recursion and begin backtracking /

if (DIST < precision)
{
/* Put your Point plotting routine here

printf("polyline 2");
printf("%f %f O.O0OOOO"X ,Y 1);
printf("%f %f 0.000000",X2,Y2);

return;

/* Put INITIATOR points one and two into the first and last
points of the GENERATOR points array as they are always
part of the generated structure

,•*s

• €:G•pont~lli~ll = XI;

G4 -3m[enrtr•o + ,]1 2

il " " -" + 21['21 Y 2;

V107

*llI

/* Determine the slope of the line formed by the init_pointl
and init.point2. This is the slope of the INITIATOR

if (X2 != Xl)
{

if (Y2 != YI)
{
Slopeinit = (Y2 - Y1)/(X2 - XI);}

else{
Slope init = 0.0;I

else

/* We can't have infinity in a register
so settle with 10k */

Slope init = ten thousand;

/* For each GENERATOR point (except end points as they are equal
to the INITIATOR end points) find the X,Y values. This is
accomplished by using the data from the global external variables.
The constant data about the ratios and angles between the
INITIATOR and GENERATOR remain the same regardless of the
INITIATORS length or position in EUCLIDIAN space */

for (I=I; I <= Generatorjpoints; I++)

/* Using the ratios of the generator perpendicular intercept
points on the INITIATOR determine the X,Y values of the
point of intersection of the perpendicular from the
GENERATOR point to the INITIATOR line.

X-perp = (XI + Gen ratio[I] * X2)/(l.O + Cen ratio[l]);
Y_perp = (Y1 + Gen ratio[I] * Y2)/(I.O + Genratio[IJ);

l0

108

/* If the ar-ge of the INITIATOR point 1 and the GENERATOR
Zpoint in question is zero the:L the GENERATOR point is

coincident with the INITIATOR line and no further
calculations are necessary *1

if (Gen angle[I] == .ero)
G pit[I-4l][1'_oi , I _perp;

G_point[I-+ 1[212 Yperp;

else

1* There are three STATES possible at this time. STATE 1
where the slope of the initiator line is parallel

to the X or Y axis (which causes havoc with the line
equations). STATE 2 where the slope of the line formed
by the initiator point 1 and the unknown ge ierator point
is parallel to the X or Y axis. Or STATE 3 where no lines
are parallel to any axis. */

/* Determine the slope of the line through the INITIATOR
point I and the unknown GENERATOR point using the
tangent of the Gen angle in Init,h *1

SlopeZen = (Tan theda[I] + Slope init)/
(one - Tan theda[I] * Slope init);

if ((Slope gen != zerc) &&
(Slopejen < ten thousand))

/* Condition one of STATE 3 */

/* Determine Y-intercept for the generator line /
ben YI - (Slope eu * Xl);

if ((Slope init • reo)tl
, Or (Slope.,it ten thousand))

/ STATE I

4:

if (Slopeinit == ten thousand)

{
/* STATE 1 condition 1; INITIATOR is parallel

to the Y axis */

G.pointfI+ 1][2] = Y..erp;
G.point[I+I1[11 = (G..point[I+1][2] - bý_en)/

Slope..en;
}

else {
/* STATE 1 condition 2; INITIATOR is parallei

to the X axis *1

G_point[I+1J[1] = X.perp;
G.point[I+1]•J [- Slope.gen

G.point[I+l1]l] + bSen;
}
}/* END STATE 1 /

else

/* STATE 3 #/

/* Determine slope of perpendicular line through the
INITIATOR perpendicular intercept. */

Slopeerp = (minus, one)/Slope--nit;

/* Determine Y-intercoept for perpendicular line */

b perp YJperp - (Slopeerp * X.perp);

/* Determine the XY values of the unknown GENERATOR
point.

G;oimntIlt1!l = (byperp - bgen)/
(Slopejgen - Slopejyerp);

Gpoit,-+ 11121 - Slope en
G_pointII+1j[11 + bjen;

} / END STATE 3 cond. I if "/

110

else

/* STATE 2 *

Slope~perp = (minus one)/Slope init;
b~perp Y Yyerp - (slopeer Xpp)

if (Slope~gen == one)

Gypoint[l+i]f1] = xi;
G~point[I+11[2) = Slopeyerp *G~point[I+iJ[1J

+ byperp;

else

Cpointjl+11j2J = YI;
GQpointll+l~t1] = (G~pointjl+iJ[2] - byperp)/

Slope~perp;

}/* END IF *
}/* END FOR ~

P* Start recursion on each line formed by the generator fromi
right to left

for (P=1; J <= Generatorjoints + ;J++)

generate (G joint JJJ [lJG..point(JJ (21,
G~point(J+ (IJ]Gjoint [J + 1] (21,precision);

P' END gene-ate '

APPENDIX B: RANDOM NUMBER GENERATORS

The routine below is a C UNIX UCB implementation of the

uniform distribution 10,11 -+ standard normal [-ooc transformation. It

generates a 500 entry table of random numbers that observes the period of the

standard normal distribution. Following this routine are statistics that verify the

transformation.

RAND OM.TABLE.GENERATOR.C

/,
This subroutine will build a table in memory that contains 500 random
numbers that observe the period of a standard normal variable,/

#include <math.h> /* Standard UNIX include file for math library */

/* External global variables /

extern double RAND[500];

/' BEGIN MAIN PROGRAM d/

rand tablegen()

/ Local Variables ,I

int lA

double UNFI, UNF2;
double rangepi;
int factor;

pi 3.1415926535;

112

Sq

/* Determine the range for the random numbers of UNIX UCB */

range = 2;
for (J=l; J<=30; J++)

{
range = range * 2;

range = range- 1;

/* Set the random number generator seed */

srandom(475836);

/* Create a Table for 500 entries */

for (I=O; k 500; I = I + 2)

/* Get a uniform random number through the Unix C subroutine 1

UNFI = randomn0;
UNF2 = randomo;

/* Normalize the uniform random number to the interval [0,11

UNFi = UNFi/ range;
UNF2 = UNF2 / range;

/" Mold the uniform random variable into the approximate normal
-. 4 • distribution */

factor = 1.0;
if (log(UNFI) < 0.0) factor = -1.0;
RAND(I] = sqrt(factor * (2.0 * log(UNFI)))

cos ((2'pi'UNF2));
SRAND[11 = RANDII) ' factor;

factor = 1.0;
if (Iog(UNF2) < 0.0) factor = -1.0;
RAND(I+ij - sqrt(factor ' (2.0 log(UNFI)))

,-0 sin ((2"pi*UNF2));
RANDjI+1j RAND(1+i] factor;

return;

113

VERIFYING STATISTICS

The UNIX UCB operating system's uniform distribution random number
generating function spans the interval defined by its integer range. For a VAX
11/780 implementation this is equivalent to 2 3 - 1 or [0,21474836471.

The random number seed was assigned the value of 475836. The UNIX UCB
random number generator with a fixed seed yields a fixed sequence of numbers
returned from the function, uniformly distributed over the range. This yields a
valuable function if the table needs to be reproduced with the same sequence

after transformation.

The table below shows the results of the uniform distribution sequence after
it was sapezeud into the interval 10,1]. These results show that the uniform
distribution has an acceptable distribution over its range. The transformation

Sinto 10,1] preserves the distribution from the original range ([0,231 - 1]).

Analysis of the normalized uniform random numbers

S0.0 0.1 = 52
0.1 - 0.2 = 47
0.2 -. 0.3 = 44
0.3 - 0.4 = 49
0.4 0.5 = 49
0.5-. 0.6 = 47
0.6 0.7 = 51
0.7 0.8 = 57
0.8 -. 0.9 = 48
0.9 -. 1.0 56

The table below shows the distribution after the
t•uniform distribution O,11 standard normal j-oo,aco transformation given the
numbers asm described in the above table. This is the data which was used to
build Figure 5.9. The transformation is acceptable for the purpose intended, that

J..: is., to simulate nature's perceived disorder in a fractal function.

114

aI

Analysis of the normal (Gaussian) random numbers

X <= -2.75= 5
-2.75 < X <= -2.25 = 8
-2.25 < X <= -1.75 16
-1.75 < X <= -1.25 29
-1.25 < X <= -0.75 = 56
-0.75 < X <= -0.25 = 88
-0.25 < X <= 0.25 = 115
0.25 < X <= 0.75 = 87
0.75< X <= 1.25=59
,-< X <= 1.75 = 21

1.75 < X <= 2.25 = 12
2.25< X<= 2.75=4
2.75< X =0

115

APPENDIX C: THE TRIANGULAR MOUNTAIN

The first routine is the main routine which initializes the generator data for

the initiating triangle and initiates the recursive process. The second routine is

the recursive subroutine which performs the generator replacement until the

recursive termination event is reached, which is defined by the precision
parameter.

MOUNTAIN.C

/,
This is the main program that controls the initialization of the triangle
initiating structure and initiates the recursion on that triangle. The
recursion will proceed until the recursive termination event (defined
by the precision global parameter)'/

#include <math.h> /* Standard UNIX include file for math library */

/* Global Defines */

idefine x 0
#define y I
#define z 2

/' Global Tables '/

double RANDj500I;
double Preciskin;
double Scale;

N

/* BEGIN MAIN PROGRAM */

inain()

f
/* Local Variables */

int I,J,K;
double PI[31,P2[3],P313];
int Seed;

/* Create the initiating triangle structure /

Plx) = 4.5;
Pl[y] = 3.25;
Plz) = 0.0;

P2[x) = 7.0;
P2(y- = 3.25;
P2[z] - 0.0;

P3(x] = 5.75;
P3fy) = 3.25 + sqrt(((2.5 2.5) - (1.25 1.25)));
P3(z] = 0.0;

/* Build the random number table (appendix B) 0/

rand table gen();

/* Frattalize until desired precision /

Seed = 0; /* Entry secd to the randont number table "/
Precision - 0.3; /' Recursive termination distance 'I
Scale = 0.2; /* Scaling factor for vertical Y displacement

in the uiountaihugenerate subroutine /

ui ountain_rienerate(P lP2,P3,Seed);

I' END MAIN
-•.;)

* 117

44•

GENERATE.MOUNTAIN.C

/,
This is the subroutine that computes the four generated triangles fromn
an initiating triangle. The routine is recursivc and terminates at a
predefined precision defined in the global parameter Precision

/P

#include <math.h> /* Standard math include file for UNIX lib /

#define x 0
#define y I
#define z?

/* Global Structures /

extern double RAND1500];
extern double Precision;
extern double Scale;

/* BEGIN RECURSIVE PROCESS */

mountain_..enerate(PIP2,P3,Seed)

P Parameter variables */

double P1131,P2131,P314];
int Seed;

/* Local variables /

int IAJ;

double Pgen 1 [3j,Pgen2j3jPgen3j3j;
".4•:• double Pwid1131, Pmid2(3J,Pxuid3(3I;

double TEMP,DIST,TWO;

TWO - 2.0;

118

/4 Determine distance between point I and point 2 */

TEMP -(P2[xI - PllxI)*(P2IxJ - Plixi) +
(P2[yJ - Plyl)*(P2'y] - Pilyl) +
(P2[z] - P1IzI)*(P2'ji .. P1(zj);

DIST = sqrt(TEMP);

/* IF DIST less than one tnen terminate this recursion and
begin backtracking *1

if (DIST < Precision){
/' Put your polygon plotting routine here */

printf("polygon3" ';
printf("%f %f %f",PIl[xj,Pl yj,P1lzI);
printf("•f %f %f" ,P2[xl,P21y],P2[zI);
printf("%f %f %f',P3[x, ,P3[y],P3[zl);

return;
}

/ Manage the Seed number for a 500 entry table '/

if (Seed > 496) Seed = 0,

/ Find the midpoints of each triangle leg '/

for (1=0; 1<=2; I++) /. 0 thru 2 => x~y~z /
1.) {

Pwidl(l (PI11 + P2[I1) / TWO;

for (I=0; i<=2; 1++) /* 0 thru 2 => xy,z '/{
Pmid2jlj - (P2111 + P3(I) / TWO;)

for (iU-0; I<-2; I++) /. 0 thru 2 x> 'z/

Pmid3 ll- (P3111 + Pill]) / TWO;

vv

iAl

/* Adjust the Y coordinate => normal from Z-X plane /

Pmid~yJ = (Scale * RANDISeedl) + Pmidlly);
Pmid2[y] = (Scale * RAND[Seed+1]) + Pmid2tyl;
Fmid3jy] = (Scale * RAND(.Seed+2]) + Pmid3JyJ;
Seed =Seed+ 1;

/* Recurse on the triangles according to the reverse order rule
for the interior triangle to preserve seed order */

mountain.generate(Pmidl,P2, Pmid2,Seed);
mountainjenerate(Pmid3,P2id2,P3, Seed);
mountain..enerate(PmI, Pmidl,Pmid3,Seed);

mountain..enerate(Pmid2,Pmid3,Pmidl,Seed);
/* END geWerate .1
)

~ I

0120

V.

APPENDIX D: THE RECTANGULAR MOUNTAIN

The first routine is the main routine which initializes the generator data for

the initiating rectangular shape and initiates the recursive process. The second
routine is the recursive subroutine which performs the generator replacement

* .until the recursive termination event is reached, which is defined by the precision

parameter.

RECTANGULAR.MOUNTAIN.C

i.This is the main program that controls the initialization of the rectangular
initiating structure and initiates the recursion on that rectangle. The
recursion will proceed until the recursive termination event (defined-
by the precision global parameter)

4../

finclude <math~h> /' Standard UNIX include file for math library /

*' Global Defines /
idefine x 0
#define Z

/ Global Tables /

double RANDI500);
double P-ecision;
double c*ale;

121

/* BEGIN MAIN PROGRAM */

mnaiL()

/* Local Variables */
int I,J,K;
double P1l3],P2[3],P3[3],F413];
int Seed;

/* Create the four sided polygon initiating structure */

P1[x] = 2.0;
Pi[y] = 5.0;
P1[z] = 1.0;

P2[x] = 6.0;
P2[y] = 5.0;
P2[z] = 1.0;

P3[xJ = 7.5;
P3[y] = 6.5;
P3[z] = 3.0;

P4[x] = 3.5;
P4[y] = 6.5;
P4[z] = 3.0;

/* Build the random number table (appendix B) */

randtable_geno;

/* Fractalize until desired precision *1
Seed = 100;
Precisioii = 0.5;
Scale = 0.07;

mountaingenerate(PI,P2,P3,P4,Seed);

/* END MAIN */
}

122

A"~ 1

RECTANGULAR.GENERATE.MOUNTAIN.C

This is the subroutine that computes the four generated rettangles from
an initiating rectangle. The routine is recursive Rnd terminates at a
predefined precision defined in the global parameter Precision

#include <math.h> /* Standard math include file for UNIX lib *,

#define x 0
#define y 1

. #define z 2

/* Global Structures *1

extern double RAND[500];
extern double Precision;
extern double Scale;

--* 1 /* BEGIN RECURSIVE PROCESS */

mountaingenerate(PI,P2,P3,P4,Seed)

/* Parameter variables *l

double P1[3],P2[3],P313j,P413];
jut Sced;

/* Local variables '/
int I,J;
double Pmid 1 [g],Pmid2[3],Pmid3[3],Pmid4[3],Center[3];
double TEMP,DISTTWO,FOUR;

TWO 2.0; FOUR = 4.0;

/ Determine distance between point 1 and point 2
TEMP = (P2[xJ - PI[x)"(P2[xj - PIjx]) +

(P22yJ - PI[y])*(P2[y] - Pity]) +
(P2{zI - PI(z])'(P2[zj - PI{zj);

DIST sqrt(TEMP),

123

-7ý%t. ` ý, O .'1

/* If DIST less than one then terminate this recursion and
begin backtracking */
if (DIST < Precision)

/* Put your Polygon output routine here */
printf(I polygon4');
printf("%f %f %f`,,P1 [x],P1 [y],P1 [z]);
printf(df %1' %f•',P2(x],P2[y],P2[zJ);
printf(" %f %f %f',P3[x],P3[y],P3[z]);
printf("%f %f %vf",P4[x],P4[y],P4[z]);

return;}

/* Manage the Seed number for a 500 entry table */
if (Seed > 496) Seed = 0;

K

/* Find the midpoints of each rectangle leg */
for (1=0; 1<=2; I++) /* 0 thru 2 => x,y,z */

PmnidilI] = (PI[Ij + P21I]) / TWO;

for (1=0; I<=2; I++) /* 0 thru 2 => x~yz /

Pmid2[Ij = (P2[1] + P3[I]) / TWO;}

for (I=0; I<-2; 1++) /*.0 thru 2 => x•y,z */

Prnid3[I1 = (P31I1 + P411]) / TWO;

for (4=0; 1<=2; 1++) /" 0 thru 2 => x•yz */{
Prmid4[1J= (PIll] + P4111) / TWO;
)

•• 124

/* The four sided polygon is non-planar to average the xyz-displacement

for a best fit approach */
for (1=0; I<=2; I++) /* 0 thru 2 => x,y,z */{

Center[I] = (P3[I] + PI[I] + P4[I] + P2[1]) / FOUR;}

/* Adjust the Y coordinate => normal from Z-X plane */
Pmidl[y] = (Scale * RAND[Seed]) + Pmidl[y];
Pmid2[y] = (Scale * RAND[Seed+1]) + Pmid2[y];
Pmid3[y] = (Scale * RAND[Seed+2J) + Pmid3[y];
Prnid4[y] = (Scale * RAND[Seed+3]) + Pmid4[y];
Center[y] (Scale * RAND[Seed+4J) + Center[y];
Seed = Seed + 4;

/* Recurse on the rectangles according to the reverse order rule
for the interior rectangles to preserve seed order */

mountainjenerate(P1, Pmidl, Center,Pmid4,Seed);
mountainjgenerate(Pmid2,Center,Pmidl, P2, Seed);
mountain _enerate(Pmid2,Center,Pmid3, P3, Seed);
mountainZenerate(P4, Pmid3, Center,Pmid4,Seed);

/* END generate */
1

•"•)•125

4g,-'

'c

APPENDIX E: GEOMETRIC SUPPORT

Many fractal applications and computer graphics models use the normal to a

plane as a computational reference point. For this reason, this appendix is

devoted to two tools for determining the plane equation of a polygon and the

equation of the normal to the computed plane.

Determinant Approach to the Planar Equation

One of the most common forms of a planar equation is the general form. This

form uniquely describes a plane through four coefficients A,B,C and D:

Az +By +Cz = D

With three points on a plane, you can determine the planar equation by

computing the coefficients. This approach utilizes the determinant form of the

planar equation. Given the points P1 = (zi,yU,zi), P 2 = (z 2,Y2,z 2) and

P 3 = (z 3 ,y3 ,z 3) such that P 1 o P 2 # P 3, these points determine a unique plane

in space through the determinant equation:

X2 -X 1 Y2 -Y Z2 =1 0

x 2 - XI Y2 - YI Z2 Y Z1 1

To simplify the equation, we replace the constant differences by the expressions:

Cix X2 - XI

C2= x3 - xI
Cly x2 - Y1
CZ, X 1 - Y-

cis x2 - Zt

C22 X3 - ZI

120

Evaluating the determinant using the diagonal approach yields:

[(x- x)C1C2,- (x - xi)C15 C2y1 +

[(y - yl)C1.C2. - (y - yl)Cl.C2,] +

Rz - z,)C11C2y - (z - zd)ClC21] = 0

Solving the equations for x,y and z in terms of the constant expressions:

A= ClYC22 - CIC2y

B = C1IC2x- ClXC23

C = ClXC2, - C1YC2X

D= -[Ax +By, +Cz1 J

The Normal to the Plane

Once the parameters A,B and C have been determined, the solution of the

linear equation for any normal to the plane is straightforward. Using the plane

parameters in the parametric equation for the normal line to the plane and using

any known point on the plane (xkwn,ykwzkwn) (the midpoint of the fractal

triangle for example) determines a normal line as:

I X = xkw + c A

V.• Y = Yk + e B
•X•Z Z= k.,n + CC

where c is a parameter such that c is an element of R. By varying the parameter

•:4 c we can solve for unique points on the normal line to the plane.

127

LIST OF REFERENCES

1. Benoit B. Mandelbrot, The Fractal Geometry of Nature, W. H.
Freeman and Company, 1983.

2. Donald F. Stanet and David F. McAllister Discrete Mather-Aatics
in Computer Science, Prentice-Hall, Inc., 1977.

3. Felix Hausdorff, Set Theory, Chelsea Publishing Company, 1957.

4. Alan Norton, Generation and Display of Geometric Fractals in 3-D,
Computer Graphics, vol 18, no. 13, July 1984.

5. J. Perrin, La Discontinuite's de la Matiere, Revue du Mois, vol 1, 1906;
quoted by Mandelbrot in Ref. l:pp 7-9.

6. Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton
University Press, 1941.

7. Special Interest Group on Computer Graphics of the Association for
Computing Machinery (SIGGRAPH), Fractals: Basic Concepts,
Computation and Rendering, Course on Fractals July 23, 1985.

8. James D. Foley and Andries Van Dam, Fundamentals of Interactive
Computer Graphics, Addison-Wesley, 1982.

9. Jagdish K. Patel and Campbell B. Read, Handbook of the Normal
Distribution, Marcel Dekker, Inc, 1982.

128

-. L.t S

Distribution List for Papers Written by Michael J. Zyda

Defense Technical Information Center,
Cameron Station,
Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School,
Monterey. CA 93943 2 copies

Center for Naval Analyses,
2000 N. Beauregard Street,
Alexandria, VA 22311

Director of Research Administration,
Code 012.
Naval Postgraduate School.
Monterey. CA 93943

Dr. Henry Fuchs.
208 New West Hall (035A).
University of North Carolina.
Chapel Hill. NC 27514

Dr. Kent R. Wilson.
University of California. San Diego
B-014.
Dept. of Chemistry,
La Jolla. CA 92093

Dr. Guy L. Tribble. III
"900 \Vaverly St.
Palo Alto. California 94301

- Bill Atkinson.
Apple Computer.
20525 Mariani Ave.
Culwrtino. CA 95014

Dr. Victor Lesser.
U ni'ers.ity of Massahusetts. Amherst
Dept. of Computer and Information Science.
Ainherst. MA 01003

Dr. Gunther Schrack.
Dept. of Electrical Engineering.
University of British Columbia.
Vancouver. B.C.. Canada VOT 1\\5

Dr. R. Daniel Bergeron.
Dept. of Comnputer Science.
Uriivcr-ity of New Hanpshire.
Durham. NH 03824

OI

-2-

Dr. Ed Wegman,
Division Head,
Mathematical Sciences Division,
Office of Naval Research,
800 N. Quincy Street.
Arlington, VA 22217-5000

Dr. Gregory B. Smith,
ATT Information Systems,
190 River Road.
Summit. NJ 07901

Dr. Lynn Conway.
University of Michigan,
263 Chrysler Center.
Ann Arbor, MI 48109

Dr. John Lowrance.
SRI International.
333 Ravenswood Ave.
Menlo Park. CA 94025

Dr. David Mizell.
Office of Naval Research,
1030 E. Green St.
Pasadena, CA 91106

Dr. Richard Lau,
Office of Naval Research.
Code 411.
800 N. Quincy St.
Arlington. VA 22217-5000

Dr. Y.S. Wu.
Naval Research Laboratory.
Code 7007.
Washington. D.C. 20375

Dr. Joel Trimble,
Office of Naval Research.
Code 251.
Arlington. VA 22217-5000

Robert A. Ellis,,

CalhiCn C.on1paly.
R &- I) Engineering.
525 Sycatnore Dr.. MIS C510
Milpitas. CA 95035.7489

Dr..-latt- Iti. Clarki.
Silicon (Graphic,. hlir.
2011 Stierlin Road.
\Mouatain View. CA N4043

-.3-

Edward R. McCracken,
Silicon Graphics, Inc.
2011 Stierlin Road.
Mountain View, CA 94043

Shinji Tomita,
Dept. of Information Science,
Kyoto University,
Sakyo-ku. Kyoto, 606, Japan

Hiroshi Hagiwara,
Dept. of Information Science,
Kyoto University,
Sakyo-ku, Kyoto, 606, Japan

Dr. Alain Fournier.
Dept. of Computer Science.
University of Toronto.
Toronto. Ontario. Canada
M5S 1A4

Dr. Andries Van Dam.
Dept. of Computer Science.
Brown University.
Providence, RI 02912

Dr. Brian A. Barsky,
Berkeley Computer Graphics Laboratory.
Computer Sciences Division.
Dept. of Electrical Engineering and Computer Sciences,
University of California.
Berkeley. CA 94720

Dr. Ivan E. Sutherland.
Carnegie Mellon University,
Pittsburg. PA 15213

Dr. Turnrr Whitted.
New West Ha!! (035A).
University of North Carolina,
Chapel Hill. NC 27514

Dr. llotwrt)). (;rafton.
Office of Naval Research.
Codte 433.
Arlington. Virginia 22217-5000

Professor Eihachiro Nakamae.
Electric Machinery Laboratory.
Hjiroshima University.
Higasliihiroshinaa 724. Japan

:-•,~k

-4.

Carl Machover,
Machover Associates,
199 Main Street,
White Plains. New York 10601

Dr. Buddy Dean,
Naval Postgraduate School,
Code 52, Dept. of Computer Science,
Monterey, California 93943

Earl Billingsley.
43 Fort Hill Terrace,
Northhampton, MA 01060

Dr. Jan Cuny,
University of Massachusetts, Amherst
Dept. of Computer and Information Science,
Amherst. MA 01003

Robert Luni.
Silicon Graphics. Inc.
2011 Stierlin Road.
Mountain View. CA 94043

Jeff Hausch.
Silicon Graphics. Inc.
2011 Stierlin Road.
Mountain View, CA 94043

Robert A. Walker.
7657 Northern Oaks Court,
Springfield. VA 22153

Dr. Barry L. Kalman.
Washington V'niversity.
Departnient of Computer Science.
iPox 1045.
St. Louis, Missouri 63130

Dr. Win. Randolph Franklin.
Etletrieal. Computer. and Systeian Enginvering Deprtuiaent.
Rensselaehr Polytt-lhnoc Institute,
Troy. New York 12180-3590

Dr. ;ershon Kedtkn.
Microelctronics Center ef North Carolina.
PO Box 12689,
3021 Cornwallis Road.
0 Research Triangle IPark.
North Carolina 27709

A

Dr. Brankf. J. Gerovac.
Digital Equipment Corporation,
150 Locke Drive LMO4/H4, Box 1015
Marlboro, Massachusetts 01752-9115

Rober! A. Schumacker,
Evans and Sutherland,
PO Box 8700,
580 Arapeen Drive.
Salt Lake City, Utah 84108

R. A. Dammkoeh!er,
Washington Unitet•.,ty,
Department of Computer Science.
Box 1045.
St. Louis, Missouri 03130

Dr. Lynn Ten Eyck.
Interface Software.
79521 Highway 99N.
Cottage Grove. Oregon 97424

Toshiaki Yoshinaga.
Hitachi Works. Hitachi Ltd.
1-1. Saiwaicho 3 Choine.
Hitachi-shi. lbaraki-ken.
317 Japan

Takatoshi Kodaira.
Omika Works. Hitachi Ltd.
2-1. Omika-cho 5-chotwe.
Hitachi-shi. Ibaraki-ken.
319-12 Japan

Atu,%hi Suzuki.
Hit•chi Engineering. Co. Ltd.
2-1. saiwai-cho 3-Chionle.
Hitachi-shi. Ibaraki-ken.
317 Japan

Toshiro Nisirnura.
Hitiachi Engineering. Co. Ltd.

2.1.',iwa-rho 3-Chn-

317 Japan

D)r. John :tandliamrnir.
-* " Dept. of Ehlerical Enginetring.

t'viversi.t of Florida.
(Gain','ilte. Florida 32611

zt

Ir

Dr. Lewis E. Hitchner.
Computer and Information Science Dept.
237 Applied Science Building,
University of California at Santa Cruz,
Santa Cruz. California 95064

Dr. Pat Mantey,
Computer Engineering Department.
University of California at Santa Cruz,
Santa Cruz, California 950M4

Dr. Walter A. Burkhardt.
University of California. San Diego
Dept. of Computer Science.
La Jolla. California 92093

P. K. Rustagi.
Silicon Graphics. Inc.
2011 Stierlin Road.
Mountain View. CA 94043

Peter Broadwell.
Silicon Graphics, Inc.
2011 Stierlin Road.
Mcuntain View, CA 94043

"Norm Miller.
"Silicon ;raphirs. Inc.
2011 Stierlin Road,
Mountain View. CA 94043

Dr. Tosiyasu L. Kunii.
Department of hnformtion sciencec.
Facuhty of Science.
The tVniver:iity of Tokyo.
7-3-1 |iongo. B:kakyo-ku. Tokyo 113.
Japan
Dr. Kainhiro Furlhi.
Institute for New Generation Comsputer Technology.

SMit4-Kok-tta) Building '21FL.

1-4-2S Mira. Minatu-ku. Tokyo 10S. .Japan

Tony% LowI'.S•.,, Silicon rp hir• .I

• + 1901 A\'entu of the Starn.
*+ ,%uit, 1774.

Los Angeles. CA %000-

Kevij Uatnmon5.
NASA AME -DDrden Flight RCfearch Facility.
PO Box 273.
Mail Stop O(I.
Edward%. California 93523

-7-

Sherman Gee.
Code 221,
Office of Naval Technology.
800 N. Quincy St.
Arlington, VA 22217

Dr. J.A. Adams.
Department of Mechanical Engineering,
ITS Naval Academy.
Annapolis. MD 21402

Dr. David F. Rogers.
Dept. of Aerospace Engineering.
US Naval Academy.
Annapolis, MD 21402

Dr. Robert F. Franklin.
Environ mental Research Institute of Michigan.
PO Box 8618.
Ann Arbor. MI 48107

LT Mark W. Hartorag.
900 Cambridge Dr 17.
Bkenicia, CA 94510

Ca.pt. Mike Gaddis.
DCA /JDSSC/C720.
1860 \Vichle Ave
Rcstou. VA 22090

Lt. Cdr. Patrick G. Hogan. USN
102 Borden Aveiue.
WVilmington. North Carolina 28403

Dr. Edwin Catwuli.

P0 Box 200W.
Sanl Rafarl, CA 9491-

Dr. John Upatty.
Compvmier S-rientce ,patact
4' •-rrmitV of \\vtrlor|.

oti •rritro. On1t ario.

0anada N2L 3(;1

Dr jar;19 Folw. ai .m trSrc
• George \War-hingon |Vnivor-ItA%

,'Dept, of Elerirical Engineering and Computer Sci .
ws'ahinato D.C. .ZW5u

,.*" •Dr. Dnnald Grr*-itwrg.
*" (in-n.'ll I 'nirrsty.

Itbrograw (if Compulvr Graphirs.
Ithaca. NY 14853

4l

-8-

Dr. Leo J. Guibas,
Systems Research Center.
Digital Equipment Corporation,

* 130 Lytton Avenue,
Palo Alto, CA 94301

Dr. S. Ganapathy,
Ultrasonic Imaging Laboratory,
Dept. of Electrical and Computer Engineering.
University of Michigan.
Ann Arbor, MI 48109

Dr. Hank Christiansen.
Brigham Young University,
Dept. of Civil Engineering,
368 Clyde Bldg.
Provo. Utah 84602

Dr. Thomas A. DeFanti.
Dept. of Electrical Engineering & Computer Science,
University of Illinois at Chicago.
Box 4348,
Chicago. IL 60680

Dr. Lansing Hatfield,
Lawrence Livermore National Laboratory,
7000 East Avenue,
PO Box 5504. L-156.
Livermore. CA 94550

